Project description:The protective role of melatonin in plants against various abiotic stresses have been widely demonstrated, but poorly explored in organ-specific responses and the transmission of melatonin signals across organs. In this study, the effects of melatonin with the root-irrigation method and the leaf-spraying method on the antioxidant system and photosynthetic machinery in maize seedlings under drought stress were investigated. The results showed that drought stress led to the rise in reactive oxygen species (ROS), severe cell death, and degradation of D1 protein, which were mitigated by the melatonin application. The application of melatonin improved the photosynthetic activities and alleviated the oxidative damages of maize seedlings under the drought stress. Compared with the leaf-spraying method, the root-irrigation method was more effective on enhancing drought tolerance. Moreover, maize seedlings made organ-specific physiological responses to the drought stress, and the physiological effects of melatonin varied with the dosage, application methods and plant organs. The signals of exogenous melatonin received by roots could affect the stress responses of leaves, and the melatonin signals perceived by leaves also led to changes in physiological metabolisms in roots under the stress. Consequently, the whole seedlings coordinated the different parts and made a systemic acclimation against the drought stress. Melatonin as a protective agent against abiotic stresses has a potential application prospect in the agricultural industry.
Project description:Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Project description:In this study, we applied exogenous chlorogenic acid (CGA) to Lonicera japonica (L. japonica) leaves via foliar sprays every Monday, Wednesday, and Friday for a period of 12 months. Our continuous monitoring over this period revealed a consistent increase in flavonoid levels from the second to the tenth month following the commencement of CGA treatment. This was accompanied by a notable upregulation in the expression of four secondary metabolite-related enzyme genes: LjPAL1, LjPAL2, LjPAL3, and LjISY1. Concurrently, there was a significant enhancement in the total activity of the enzyme phenylalanine ammonia-lyase. The total antioxidant capacity of the plants also showed a marked increase from the third to the seventh month post-treatment initiation, subsequently stabilizing. This increase was also reflected in the elevated activities of key antioxidant enzymes: peroxidase, polyphenol oxidase, and superoxide dismutase. Furthermore, the treatment notably enhanced various indicators of nutrient growth, such as total protein content, total sugar content, and leaf area. Notably, the relative expression of LjTF1, a kind of BZIP transcription factor gene known for its extensive regulatory effects, showed a significant and sustained increase after the start of exogenous CGA treatment. Subsequent metabolomic analysis revealed significant changes in L. japonica metabolites. Specifically, 172 differentially expressed metabolites (DEMs) showed a notable increase (Fold > 1), predominantly in pathways related to nutrient metabolism such as carbohydrate, amino acid, and energy metabolism. Notably, some of the highly expressed DEMs (Fold > 4) are key antioxidants and medicinal components in L. japonica. The experimental findings were in alignment with the metabolomics analysis, indicating that exogenous CGA can act as a stimulant for L. japonica. It promotes the significant accumulation of certain secondary metabolites, enhances nutritive growth, and boosts the plant's total antioxidant capacity.Supplementary informationThe online version contains supplementary material available at 10.1007/s12298-024-01435-8.
Project description:Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.
Project description:Melatonin is a small-molecule indole hormone that plays an important role in participating in biotic and abiotic stress resistance. Melatonin has been confirmed to promote the normal development of plants under adversity stress by mediating physiological regulation mechanisms. However, the mechanisms by which exogenous melatonin mediates salt tolerance via regulation of antioxidant activity and osmosis in cotton seedlings remain largely unknown. In this study, the regulatory effects of melatonin on reactive oxygen species (ROS), the antioxidant system, and osmotic modulators of cotton seedlings were determined under 0-500 µM melatonin treatments with salt stress induced by 150 mM NaCl treatment. Cotton seedlings under salt stress exhibited an inhibition of growth, excessive hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA) accumulations in leaves, increased activity levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and elevated ascorbic acid (AsA) and glutathione (GSH) content in leaves. However, the content of osmotic regulators (i.e., soluble sugars and proteins) in leaves was reduced under salt stress. This indicates high levels of ROS were produced, and the cell membrane was damaged. Additionally, osmotic regulatory substance content was reduced, resulting in osmotic stress, which seriously affected cotton seedling growth under salt stress. However, exogenous melatonin at different concentrations reduced the contents of H2O2, O2 -, and MDA in cotton leaves, increased the activity of antioxidant enzymes and the content of reductive substances (i.e., AsA and GSH), and promoted the accumulation of osmotic regulatory substances in leaves under salt stress. These results suggest that melatonin can inhibit ROS production in cotton seedlings, improve the activity of the antioxidant enzyme system, raise the content of osmotic regulation substances, reduce the level of membrane lipid peroxidation, and protect the integrity of the lipid membrane under salt stress, which reduces damage caused by salt stress to seedlings and effectively enhances inhibition of salt stress on cotton seedling growth. These results indicate that 200 µM melatonin treatment has the best effect on the growth and salt tolerance of cotton seedlings.
Project description:Governed by melatonin, ovine reproductive seasonality limits production outcomes due to periods of decreased reproductive efficiency. Though it is established that slow-release melatonin implants improve out of season reproductive performance in the ewe, the comprehensive effects of exogenous melatonin in the ram remain inconclusive. This study aimed to ultimately clarify the ability of exogenous melatonin to alter ram reproductive function during the non-breeding season and the subsequent breeding season. Hence, we investigated the effect of exogenous melatonin on reproductive endocrinology, semen quality and production, testicular size and libido in Merino and Poll Dorset rams (n = 31, using a subset of 18 rams for analysis of semen production and quality). Melatonin treatment resulted in elevation of melatonin in seminal plasma from 1-8 weeks post-implantation and in blood plasma at 6 weeks post-implantation. The blood plasma testosterone of implanted rams was greater than controls at both 6 weeks post-implantation and during the following breeding season. Implanted rams exhibited increased testicular size and number of sperm per ejaculate from 3-12 weeks post-implantation but did not demonstrate any change in sperm motility or morphology in response to treatment. Compared to their control counterparts, melatonin-treated Poll Dorset rams exhibited a lower percentage of sperm DNA fragmentation during several weeks of the non-breeding season. Though melatonin increased the likelihood of ejaculate collection in Poll Dorset rams (P < 0.05), libido was otherwise unaffected by treatment. Melatonin did not alter seminal plasma concentrations of inhibin A or Anti-Mullerian hormone, however, for the first time in the ram we have shown Anti-Mullerian hormone to be positively correlated with the number of sperm per ejaculate and sperm motility (r = 0.464 and 0.3242 respectively, P < 0.001), and inhibin A to be correlated to the number of sperm per ejaculate (r = 0.1786, P = 0.0135). These results indicate that melatonin is able to both systemically upregulate reproduction and act directly upon testicular function in the ram.
Project description:Melatonin regulates defense responses in plants under environmental stress. This study aimed to explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar spraying of melatonin at various concentrations (CK, 0, 10, 100, 200, and 300 μmol·L-1). The growth parameters, malondialdehyde (MDA) content, antioxidant enzyme activity, osmoregulatory substance levels, and other physiological indicators were assessed to elucidate the physiological mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in pumpkin seedlings. The results indicate that pumpkin seedlings exhibit waterlogging symptoms, such as leaf wilting, water loss, edge chlorosis, and fading, under waterlogging stress conditions. Various growth indicators of the seedlings, including plant height, stem diameter, root length, fresh and dry weight, and leaf chlorophyll content, were significantly reduced. Moreover, the MDA content in leaves and roots increased significantly, along with elevated activities of superoxide dismutase, catalase, peroxidase, and soluble protein contents. When different concentrations of melatonin were sprayed on the leaves post waterlogging stress treatment, pumpkin seedlings showed varying degrees of recovery, with the 100 μmol·L-1 treatment displaying the best growth status and plant morphological phenotypes. There were no significant differences compared to the control group. Seedling growth indicators, chlorophyll content, root activity, antioxidant enzyme activities, soluble protein content, and osmotic adjustment substance content all increased to varying degrees with increasing melatonin concentration, peaking at 100 μmol·L-1. Melatonin also reduced membrane damage caused by oxidative stress and alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant enzymes and systems involved in scavenging reactive oxygen species, with 100 μmol·L-1 as the optimal concentration. These findings underscore the crucial role of exogenous melatonin in alleviating waterlogging stress in pumpkins. The findings of this study offer a theoretical framework and technical assistance for cultivating waterlogging-resistant pumpkins in practical settings. Additionally, it establishes a theoretical groundwork for the molecular breeding of pumpkins with increased tolerance to waterlogging.
Project description:Root systems are the key organs through which plants absorb water and nutrients and perceive the soil environment and thus are easily damaged by salt stress. Melatonin can alleviate stress-induced damage to roots. The present study investigated the effects of exogenous melatonin on the root physiology, transcriptome and metabolome of cotton seedlings under salt stress. Salt stress was observed to damage the cell structure and disorder the physiological system of cotton seedling roots. After subjecting melatonin-soaked seeds to salt stress, the activities of SOD, CAT and POD in cotton seedling roots increased by 10-25%, 50-60% and 50-60%, respectively. The accumulation of H2O2 and MDA were significantly decreased by 30-60% and 30-50%, respectively. The contents of soluble sugar, soluble protein and K+ increased by 15-30%, 15-30% and 20-50%, respectively, while the Na+ content was significantly reduced. Melatonin also increased auxin (by 20-40%), brassinosteroids (by 5-40%) and gibberellin (by 5-35%) and promoted melatonin content and root activity. Exogenous melatonin maintained the integrity of root cells and increased the number of organelles. Transcriptomic and metabolomic results showed that exogenous melatonin could mitigate the salt-stress-induced inhibition of plant root development by regulating the reactive oxygen species scavenging system; ABC transporter synthesis; plant hormone signal transduction, endogenous melatonin gene expression; and the expression of the transcription factors MYB, TGA and WRKY33. These results provide a new direction and empirical basis for improving crop salt tolerance with melatonin.