Project description:Melatonin plays a potential role in multiple plant developmental processes and stress response. However, there are no reports regarding exogenous melatonin promoting rice seed germination under salinity and nor about the underlying molecular mechanisms at genome-wide. Here, we revealed that exogenous application of melatonin conferred roles in promoting rice seed germination under salinity. The putative molecular mechanisms of exogenous melatonin in promoting rice seed germination under high salinity were further investigated through metabolomic and transcriptomic analyses. The results state clearly that the phytohormone contents were reprogrammed, the activities of SOD, CAT, POD were enhanced, and the total antioxidant capacity was activated under salinity by exogenous melatonin. Additionally, melatonin-pre-treated seeds exhibited higher concentrations of glycosides than non-treated seeds under salinity. Furthermore, exogenous melatonin alleviated the accumulation of fatty acids induced by salinity. Genome-wide transcriptomic profiling identified 7160 transcripts that were differentially expressed in NaCl, MT100 and control. Pathway and GO term enrichment analysis revealed that genes involved in the response to oxidative stress, hormone metabolism, heme building, mitochondrion, tricarboxylic acid transformation were altered after melatonin pre-treatment under salinity. This study provides the first evidence of the protective roles of exogenous melatonin in increasing rice seed germination under salt stress, mainly via activation of antioxidants and modulation of metabolic homeostasis.
Project description:To investigate the role of melatonin in salt tolerance of maize, we determine the seed germinated rate of maize under CK, NaCl and NaCl+melatonin. We then performed miRNA profiling analysis using data obtained from miRNA-seq of the seeds of three different treatments.
Project description:To investigate the role of melatonin in salt tolerance of maize, we determine the seed germinated rate of maize under CK, NaCl and NaCl+melatonin. We then performed gene expression profiling analysis using data obtained from RNA-seq of the seeds of three different treatments.
Project description:Background: Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in cucumber green mottle mosaic virus (CGMMV) infection remains unknown. Results: In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 µM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, pepper mild mottle virus (PMMoV) infection. Conclusions: Together, these results indicate that exogenous melatonin controls two Tobamovirus infection and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.
Project description:Our experiments show that exogenous MT treatment can effectively delay the decay and water loss rate of post-harvest wax apples, which may be related to reducing the degree of membrane lipid peroxidation and inhibiting enzymatic browning. MT treatment also maintains the quality of post-harvest wax apple by enhancing the activity of antioxidant enzymes. At the same time, it can reduce the incidence of post-harvest diseases of wax apple by increasing the JA and SA contents. MT can down-regulate the expression of genes related to oxidation, and up-regulate the expression of related genes in antioxidant enzymes and non-enzymatic antioxidant pathways, suggesting that exogenous melatonin can reduce the production of excess ROS and maintain the redox homeostasis of post-harvest wax apple. Therefore, melatonin, as a strong and effective free radical scavenger and antioxidant, plays an important role in delaying the decay of post-harvest wax apples and prolonging the shelf life.
Project description:au07-08_nacl - nacl - Small RNAs induced under salt stress. - Arabidopsis seedlings have been treated with 150 mM NaCl in orden to determine small RNAs specifically induced by this stress. Keywords: treated vs untreated comparison