Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5'-AMP-activated protein kinase.
Ontology highlight
ABSTRACT: Recently, we have reported that the inhibition of mitochondrial respiration by nitric oxide (NO) leads to an up-regulation of glycolysis and affords cytoprotection against energy failure through the stimulation of AMPK (5'-AMP-activated protein kinase) [Almeida, Moncada and Bolanos (2004) Nat. Cell Biol. 6, 45-51]. To determine whether glucose transport contributes specifically to this effect, we have now investigated the possible role of NO in modulating glucose uptake through GLUT3, a facilitative high-affinity glucose carrier that has been suggested to afford cytoprotection against hypoglycaemic episodes. To do so, GLUT3-lacking HEK-293T cells (human embryonic kidney 293T cells) were transformed to express a plasmid construction encoding green fluorescent protein-tagged GLUT3 cDNA. This carrier was preferentially localized to the plasma membrane, was seen to be functionally active and afforded cytoprotection against low glucose-induced apoptotic death. Inhibition of mitochondrial respiration by NO triggered a rapid, cGMP-independent enhancement of GLUT3-mediated glucose uptake through a mechanism that did not involve transporter translocation. Furthermore, the functional disruption of AMPK by the RNA interference strategy rendered cells unable to respond to NO by activating GLUT3-mediated glucose uptake. These results suggest that the inhibition of mitochondrial respiration by NO activates AMPK to stimulate glucose uptake, thereby representing a novel survival pathway during pathophysiological conditions involving transient reductions in the supply of cellular glucose.
SUBMITTER: Cidad P
PROVIDER: S-EPMC1134149 | biostudies-literature | 2004 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA