Project description:ImportanceCervical cancer is highly preventable but remains a common and deadly cancer in areas without screening programs. The creation of a diagnostic system to digitize Papanicolaou test samples and analyze them using a cloud-based deep learning system (DLS) may provide needed cervical cancer screening to resource-limited areas.ObjectiveTo determine whether artificial intelligence-supported digital microscopy diagnostics can be implemented in a resource-limited setting and used for analysis of Papanicolaou tests.Design, setting, and participantsIn this diagnostic study, cervical smears from 740 HIV-positive women aged between 18 and 64 years were collected between September 1, 2018, and September 30, 2019. The smears were digitized with a portable slide scanner, uploaded to a cloud server using mobile networks, and used to train and validate a DLS for the detection of atypical cervical cells. This single-center study was conducted at a local health care center in rural Kenya.ExposuresDetection of squamous cell atypia in the digital samples by analysis with the DLS.Main outcomes and measuresThe accuracy of the DLS in the detection of low- and high-grade squamous intraepithelial lesions in Papanicolaou test whole-slide images.ResultsPapanicolaou test results from 740 HIV-positive women (mean [SD] age, 41.8 [10.3] years) were collected. The DLS was trained using 350 whole-slide images and validated on 361 whole-slide images (average size, 100 387 × 47 560 pixels). For detection of cervical cellular atypia, sensitivities were 95.7% (95% CI, 85.5%-99.5%) and 100% (95% CI, 82.4%-100%), and specificities were 84.7% (95% CI, 80.2%-88.5%) and 78.4% (95% CI, 73.6%-82.4%), compared with the pathologist assessment of digital and physical slides, respectively. Areas under the receiver operating characteristic curve were 0.94 and 0.96, respectively. Negative predictive values were high (99%-100%), and accuracy was high, particularly for the detection of high-grade lesions. Interrater agreement was substantial compared with the pathologist assessment of digital slides (κ = 0.72) and fair compared with the assessment of glass slides (κ = 0.36). No samples that were classified as high grade by manual sample analysis had false-negative assessments by the DLS.Conclusions and relevanceIn this study, digital microscopy with artificial intelligence was implemented at a rural clinic and used to detect atypical cervical smears with a high sensitivity compared with visual sample analysis.
Project description:BackgroundAdequate cytology is limited by insufficient cytologists in a large-scale cervical cancer screening. We aimed to develop an artificial intelligence (AI)-assisted cytology system in cervical cancer screening program.MethodsWe conducted a perspective cohort study within a population-based cervical cancer screening program for 0.7 million women, using a validated AI-assisted cytology system. For comparison, cytologists examined all slides classified by AI as abnormal and a randomly selected 10% of normal slides. Each woman with slides classified as abnormal by either AI-assisted or manual reading was diagnosed by colposcopy and biopsy. The outcomes were histologically confirmed cervical intraepithelial neoplasia grade 2 or worse (CIN2+).ResultsFinally, we recruited 703 103 women, of whom 98 549 were independently screened by AI and manual reading. The overall agreement rate between AI and manual reading was 94.7% (95% confidential interval [CI], 94.5%-94.8%), and kappa was 0.92 (0.91-0.92). The detection rates of CIN2+ increased with the severity of cytology abnormality performed by both AI and manual reading (Ptrend < 0.001). General estimated equations showed that detection of CIN2+ among women with ASC-H or HSIL by AI were significantly higher than corresponding groups classified by cytologists (for ASC-H: odds ratio [OR] = 1.22, 95%CI 1.11-1.34, P < .001; for HSIL: OR = 1.41, 1.28-1.55, P < .001). AI-assisted cytology was 5.8% (3.0%-8.6%) more sensitive for detection of CIN2+ than manual reading with a slight reduction in specificity.ConclusionsAI-assisted cytology system could exclude most of normal cytology, and improve sensitivity with clinically equivalent specificity for detection of CIN2+ compared with manual cytology reading. Overall, the results support AI-based cytology system for the primary cervical cancer screening in large-scale population.
Project description:Novel screening and diagnostic tests based on artificial intelligence (AI) image recognition algorithms are proliferating. Some initial reports claim outstanding accuracy followed by disappointing lack of confirmation, including our own early work on cervical screening. This is a presentation of lessons learned, organized as a conceptual step-by-step approach to bridge the gap between the creation of an AI algorithm and clinical efficacy. The first fundamental principle is specifying rigorously what the algorithm is designed to identify and what the test is intended to measure (eg, screening, diagnostic, or prognostic). Second, designing the AI algorithm to minimize the most clinically important errors. For example, many equivocal cervical images cannot yet be labeled because the borderline between cases and controls is blurred. To avoid a misclassified case-control dichotomy, we have isolated the equivocal cases and formally included an intermediate, indeterminate class (severity order of classes: case>indeterminate>control). The third principle is evaluating AI algorithms like any other test, using clinical epidemiologic criteria. Repeatability of the algorithm at the borderline, for indeterminate images, has proven extremely informative. Distinguishing between internal and external validation is also essential. Linking the AI algorithm results to clinical risk estimation is the fourth principle. Absolute risk (not relative) is the critical metric for translating a test result into clinical use. Finally, generating risk-based guidelines for clinical use that match local resources and priorities is the last principle in our approach. We are particularly interested in applications to lower-resource settings to address health disparities. We note that similar principles apply to other domains of AI-based image analysis for medical diagnostic testing.
Project description:BACKGROUND:The World Health Organization (WHO) called for global action towards the elimination of cervical cancer. One of the main strategies is to screen 70% of women at the age between 35 and 45?years and 90% of women managed appropriately by 2030. So far, approximately 85% of cervical cancers occur in low- and middle-income countries (LMICs). The colposcopy-guided biopsy is crucial for detecting cervical intraepithelial neoplasia (CIN) and becomes the main bottleneck limiting screening performance. Unprecedented advances in artificial intelligence (AI) enable the synergy of deep learning and digital colposcopy, which offers opportunities for automatic image-based diagnosis. To this end, we discuss the main challenges of traditional colposcopy and the solutions applying AI-guided digital colposcopy as an auxiliary diagnostic tool in low- and middle- income countries (LMICs). MAIN BODY:Existing challenges for the application of colposcopy in LMICs include strong dependence on the subjective experience of operators, substantial inter- and intra-operator variabilities, shortage of experienced colposcopists, consummate colposcopy training courses, and uniform diagnostic standard and strict quality control that are hard to be followed by colposcopists with limited diagnostic ability, resulting in discrepant reporting and documentation of colposcopy impressions. Organized colposcopy training courses should be viewed as an effective way to enhance the diagnostic ability of colposcopists, but implementing these courses in practice may not always be feasible to improve the overall diagnostic performance in a short period of time. Fortunately, AI has the potential to address colposcopic bottleneck, which could assist colposcopists in colposcopy imaging judgment, detection of underlying CINs, and guidance of biopsy sites. The automated workflow of colposcopy examination could create a novel cervical cancer screening model, reduce potentially false negatives and false positives, and improve the accuracy of colposcopy diagnosis and cervical biopsy. CONCLUSION:We believe that a practical and accurate AI-guided digital colposcopy has the potential to strengthen the diagnostic ability in guiding cervical biopsy, thereby improves cervical cancer screening performance in LMICs and accelerates the process of global cervical cancer elimination eventually.
Project description:Lung cancer is responsible for more fatalities than any other cancer worldwide, with 1.76 million associated deaths reported in 2018. The key issue in the fight against this disease is the detection and diagnosis of all pulmonary nodules at an early stage. Artificial intelligence (AI) algorithms play a vital role in the automated detection, segmentation, and computer-aided diagnosis of malignant lesions. Among the existing algorithms, radiomics and deep-learning-based types appear to show the most promise. Radiomics is a growing field related to the extraction of a set of features from an image, which allows for automated classification of medical images into a predefined group. The process comprises a series of consecutive steps including image acquisition and pre-processing, segmentation of the desired region of interest, calculation of defined features, feature engineering, and construction of the classification model. The features calculated in this process are mainly shape features, as well as first- and higher-order texture features. To date, more than 100 features have been defined, although this number varies depending on the application. The greatest challenge in radiomics is building a cross-validated model based on a selected set of calculated features known as the radiomic signature. Numerous radiomic signatures have successfully been developed; however, reproducibility and clinical validity of the results obtained constitutes a considerable challenge of modern radiomics. Deep learning algorithms are another rapidly evolving technique and are recognized as a valuable tool in the field of medical image analysis for the detection, characterization, and assessment of lesions. Such an approach involves the design of artificial neural network architecture while upholding the goal of high classification accuracy. This paper illuminates the evolution and current state of artificial intelligence methods in lung imaging and the detection and diagnosis of pulmonary nodules, with a particular emphasis on radiomics and deep learning methods.
Project description:Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.
Project description:Colorectal cancer (CRC) is the third most common cancer worldwide, with the highest incidence reported in high-income countries. However, because of the slow progression of neoplastic precursors, along with the opportunity for their endoscopic detection and resection, a well-designed endoscopic screening program is expected to strongly decrease colorectal cancer incidence and mortality. In this regard, quality of colonoscopy has been clearly related with the risk of post-colonoscopy colorectal cancer. Recently, the development of artificial intelligence (AI) applications in the medical field has been growing in interest. Through machine learning processes, and, more recently, deep learning, if a very high numbers of learning samples are available, AI systems may automatically extract specific features from endoscopic images/videos without human intervention, helping the endoscopists in different aspects of their daily practice. The aim of this review is to summarize the current knowledge on AI-aided endoscopy, and to outline its potential role in colorectal cancer prevention.
Project description:ObjectiveTo determine the most cost-effective screening programme for cervical cancer.DesignCost-effectiveness analysis from a societal perspective.SettingThe Netherlands.PopulationDutch women who have not been invited for human papillomavirus (HPV) vaccination.MethodsWe calibrated the microsimulation screening analysis (MISCAN) model to Dutch epidemiological data. We used this model to consider nine screening strategies that use: (i) cytological testing with cytology triage for borderline/mildly abnormal smears; (ii) HPV testing with cytology triage for HPV-positive smears; or (iii) cytological testing with HPV triage for borderline/mildly abnormal smears. For each strategy, we varied the number of screening rounds, the time interval, the age of the first screening, and the type of cytological testing (conventional or liquid-based cytology).Main outcome measuresQuality-adjusted life years (QALYs) gained and costs from a societal perspective.ResultsUnder the base-case assumptions, primary HPV testing with cytology triage is the most cost-effective strategy. Using cost-effectiveness thresholds of € 20,000 and € 50,000 per QALY gained yields optimal screening programmes with three and seven screening rounds, respectively. The results are sensitive to several uncertain model inputs, most importantly the costs of the HPV test. For women aged 32 years or younger, primary cytology screening is more cost-effective than primary HPV testing.ConclusionsIncreasing the interval between screening rounds and changing the primary test from cytology to HPV testing can improve the effectiveness and decrease the costs of cervical cancer screening in the Netherlands.
Project description:Visual inspection with acetic acid (VIA) is one of the methods recommended by the World Health Organization for cervical cancer screening. VIA is simple and low-cost; it, however, presents high subjectivity. We conducted a systematic literature search in PubMed, Google Scholar and Scopus to identify automated algorithms for classifying images taken during VIA as negative (healthy/benign) or precancerous/cancerous. Of the 2608 studies identified, 11 met the inclusion criteria. The algorithm with the highest accuracy in each study was selected, and some of its key features were analyzed. Data analysis and comparison between the algorithms were conducted, in terms of sensitivity and specificity, ranging from 0.22 to 0.93 and 0.67 to 0.95, respectively. The quality and risk of each study were assessed following the QUADAS-2 guidelines. Artificial intelligence-based cervical cancer screening algorithms have the potential to become a key tool for supporting cervical cancer screening, especially in settings where there is a lack of healthcare infrastructure and trained personnel. The presented studies, however, assess their algorithms using small datasets of highly selected images, not reflecting whole screened populations. Large-scale testing in real conditions is required to assess the feasibility of integrating those algorithms in clinical settings.
Project description:BackgroundArtificial intelligence (AI) is increasingly being proposed for use in medicine, including breast cancer screening (BCS). Little is known, however, about referring primary care providers' (PCPs') preferences for this technology.MethodsWe identified the most important attributes of AI BCS for ordering PCPs using qualitative interviews: sensitivity, specificity, radiologist involvement, understandability of AI decision-making, supporting evidence, and diversity of training data. We invited US-based PCPs to participate in an internet-based experiment designed to force participants to trade off among the attributes of hypothetical AI BCS products. Responses were analyzed with random parameters logit and latent class models to assess how different attributes affect the choice to recommend AI-enhanced screening.ResultsNinety-one PCPs participated. Sensitivity was most important, and most PCPs viewed radiologist participation in mammography interpretation as important. Other important attributes were specificity, understandability of AI decision-making, and diversity of data. We identified 3 classes of respondents: "Sensitivity First" (41%) found sensitivity to be more than twice as important as other attributes; "Against AI Autonomy" (24%) wanted radiologists to confirm every image; "Uncertain Trade-Offs" (35%) viewed most attributes as having similar importance. A majority (76%) accepted the use of AI in a "triage" role that would allow it to filter out likely negatives without radiologist confirmation.Conclusions and relevanceSensitivity was the most important attribute overall, but other key attributes should be addressed to produce clinically acceptable products. We also found that most PCPs accept the use of AI to make determinations about likely negative mammograms without radiologist confirmation.