Unknown

Dataset Information

0

The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: A population-based cohort study of 0.7 million women.


ABSTRACT: BACKGROUND:Adequate cytology is limited by insufficient cytologists in a large-scale cervical cancer screening. We aimed to develop an artificial intelligence (AI)-assisted cytology system in cervical cancer screening program. METHODS:We conducted a perspective cohort study within a population-based cervical cancer screening program for 0.7 million women, using a validated AI-assisted cytology system. For comparison, cytologists examined all slides classified by AI as abnormal and a randomly selected 10% of normal slides. Each woman with slides classified as abnormal by either AI-assisted or manual reading was diagnosed by colposcopy and biopsy. The outcomes were histologically confirmed cervical intraepithelial neoplasia grade 2 or worse (CIN2+). RESULTS:Finally, we recruited 703 103 women, of whom 98 549 were independently screened by AI and manual reading. The overall agreement rate between AI and manual reading was 94.7% (95% confidential interval [CI], 94.5%-94.8%), and kappa was 0.92 (0.91-0.92). The detection rates of CIN2+ increased with the severity of cytology abnormality performed by both AI and manual reading (Ptrend  < 0.001). General estimated equations showed that detection of CIN2+ among women with ASC-H or HSIL by AI were significantly higher than corresponding groups classified by cytologists (for ASC-H: odds ratio [OR] = 1.22, 95%CI 1.11-1.34, P < .001; for HSIL: OR = 1.41, 1.28-1.55, P < .001). AI-assisted cytology was 5.8% (3.0%-8.6%) more sensitive for detection of CIN2+ than manual reading with a slight reduction in specificity. CONCLUSIONS:AI-assisted cytology system could exclude most of normal cytology, and improve sensitivity with clinically equivalent specificity for detection of CIN2+ compared with manual cytology reading. Overall, the results support AI-based cytology system for the primary cervical cancer screening in large-scale population.

SUBMITTER: Bao H 

PROVIDER: S-EPMC7520355 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: A population-based cohort study of 0.7 million women.

Bao Heling H   Sun Xiaorong X   Zhang Yi Y   Pang Baochuan B   Li Hua H   Zhou Liang L   Wu Fengpin F   Cao Dehua D   Wang Jian J   Turic Bojana B   Wang Linhong L  

Cancer medicine 20200722 18


<h4>Background</h4>Adequate cytology is limited by insufficient cytologists in a large-scale cervical cancer screening. We aimed to develop an artificial intelligence (AI)-assisted cytology system in cervical cancer screening program.<h4>Methods</h4>We conducted a perspective cohort study within a population-based cervical cancer screening program for 0.7 million women, using a validated AI-assisted cytology system. For comparison, cytologists examined all slides classified by AI as abnormal and  ...[more]

Similar Datasets

| S-EPMC11341547 | biostudies-literature
| S-EPMC8774766 | biostudies-literature
| S-EPMC9755280 | biostudies-literature
| S-EPMC9290600 | biostudies-literature
| S-EPMC7970338 | biostudies-literature
| S-EPMC9617337 | biostudies-literature
| S-EPMC9529161 | biostudies-literature
| S-EPMC9205953 | biostudies-literature
| S-EPMC8038815 | biostudies-literature
| S-EPMC7043059 | biostudies-literature