Project description:Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer and additional computational functionality can be achieved using SW interference, SOT-driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT-driven auto-oscillations in magnetic nanoconstrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs, enabling long-range SOT-driven SW propagation for nanomagnonics, SW logic, and neuromorphic computing, directly compatible with CMOS technology.
Project description:Spin current generation through the spin-orbit interaction in non-magnetic materials lies at the heart of spintronics. When the generated spin current is injected to a ferromagnet, it produces spin-orbit torque and manipulates magnetization efficiently. Optically generated spin currents are expected to be superior to their electrical counterparts in terms of the manipulation speed. Here we report optical spin-orbit torques in heavy metal/ferromagnet heterostructures. The strong spin-orbit coupling of heavy metals induces photo-excited carriers to be spin-polarized, and their transport from heavy metals to ferromagnets induces a torque on magnetization. Our results demonstrate that heavy metals can generate spin-orbit torque not only electrically but also optically.
Project description:We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal in the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.
Project description:The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by π), depending on the d-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.
Project description:Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts.
Project description:Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.
Project description:The paper presents our simulated results showing the substantial improvement of both switching speed and energy consumption in a perpendicular magnetic tunnel junction (p-MTJ), a core unit of Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM), by the help of additional Spin-Orbit-Torque (SOT) write pulse current (WPSOT). An STT-SOT hybrid torque module for OOMMF simulation is implemented to investigate the switching behavior of a 20 nm cell in the p-MTJ. We found that the assistance of WPSOT to STT write pulse current (WPSTT) have a huge influence on the switching behavior of the free layer in the p-MTJ. For example, we could dramatically reduce the switching time (tSW) by 80% and thereby reduce the write energy over 70% as compared to those in the absence of the WPSOT. Even a very tiny amplitude of WPSOT (JSOT of the order of 102 A/m2) substantially assists to reduce the critical current density for switching of the free layer and thereby decreases the energy consumption as well. It is worth to be pointed out that the energy can be saved further by tuning the WPSOT parameters, i.e., amplitude and duration along at the threshold WPSTT. Our findings show that the proposed STT-SOT hybrid switching scheme has a great impact on the MRAM technology seeking the high speed and low energy consumption.
Project description:Racetrack memory (RM) has sparked enormous interest thanks to its outstanding potential for low-power, high-density and high-speed data storage. However, since it requires bi-directional domain wall (DW) shifting process for outputting data, the mainstream stripe-shaped concept certainly suffers from the data overflow issue. This geometrical restriction leads to increasing complexity of peripheral circuits or programming as well as undesirable reliability issue. In this work, we propose and study ring-shaped RM, which is based on an alternative mechanism, spin orbit torque (SOT) driven chiral DW motions. Micromagnetic simulations have been carried out to validate its functionality and exhibit its performance advantages. The current flowing through the heavy metal instead of ferromagnetic layer realizes the "end to end" circulation of storage data, which remains all the data in the device even if they are shifted. It blazes a promising path for application of RM in practical memory and logic.
Project description:We present a reconfigurable nanoscale spin-wave directional coupler based on spin-orbit torque (SOT). By micromagnetic simulations, it is demonstrated that the functionality and operating frequency of proposed device can be dynamically switched by inverting the whole or part of the relative magnetic configuration of the dipolar-coupled waveguides using SOT. Utilizing the effect of sudden change in coupling length, the functionality of power divider can be realized. The proposed reconfigurable spin-wave directional coupler opens a way for two-dimensional planar magnonic integrated circuits.
Project description:Current-induced spin-orbit torques (SOTs) enable fast and efficient manipulation of the magnetic state of magnetic tunnel junctions (MTJs), making them attractive for memory, in-memory computing, and logic applications. However, the requirement of the external magnetic field to achieve deterministic switching in perpendicularly magnetized SOT-MTJs limits its implementation for practical applications. Here, we introduce a field-free switching (FFS) solution for the SOT-MTJ device by shaping the SOT channel to create a "bend" in the SOT current. The resulting bend in the charge current creates a spatially nonuniform spin current, which translates into inhomogeneous SOT on an adjacent magnetic free layer enabling deterministic switching. We demonstrate FFS experimentally on scaled SOT-MTJs at nanosecond time scales. This proposed scheme is scalable, material-agnostic, and readily compatible with wafer-scale manufacturing, thus creating a pathway for developing purely current-driven SOT systems.