Project description:Seawater splitting represents an inexpensive and attractive route for producing hydrogen, which does not require a desalination process. Highly active and durable electrocatalysts are required to sustain seawater splitting. Herein we report the phosphidation-based synthesis of a cobalt-iron-phosphate ((Co,Fe)PO4) electrocatalyst for hydrogen evolution reaction (HER) toward alkaline seawater splitting. (Co,Fe)PO4 demonstrates high HER activity and durability in alkaline natural seawater (1 M KOH + seawater), delivering a current density of 10 mA/cm2 at an overpotential of 137 mV. Furthermore, the measured potential of the electrocatalyst ((Co,Fe)PO4) at a constant current density of -100 mA/cm2 remains very stable without noticeable degradation for 72 h during the continuous operation in alkaline natural seawater, demonstrating its suitability for seawater applications. Furthermore, an alkaline seawater electrolyzer employing the non-precious-metal catalysts demonstrates better performance (1.625 V at 10 mA/cm2) than one employing precious metal ones (1.653 V at 10 mA/cm2). The non-precious-metal-based alkaline seawater electrolyzer exhibits a high solar-to-hydrogen (STH) efficiency (12.8%) in a commercial silicon solar cell.
Project description:Transition bimetallic alloy-based catalysts are regarded as attractive alternatives for the oxygen evolution reaction (OER), attributed to their competitive economics, high conductivity and intrinsic properties. Herein, we prepared FeNi3/C nanorods with largely improved catalytic OER activity by combining hydrothermal reaction and thermal annealing treatment. The temperature effect on the crystal structure and chemical composition of the FeNi3/C nanorods was revealed, and the enhanced catalytic performance of FeNi3/C with an annealing temperature of 400 °C was confirmed by several electrochemical tests. The outstanding catalytic performance was assigned to the formation of bimetallic alloys/carbon composites. The FeNi3/C nanorods showed an overpotential of 250 mV to afford a current density of 10 mA cm-2 and a Tafel slope of 84.9 mV dec-1, which were both smaller than the other control samples and commercial IrO2 catalysts. The fast kinetics and high catalytic stability were also verified by electrochemical impendence spectroscopy and chronoamperometry for 15 h. This study is favorable for the design and construction of bimetallic alloy-based materials as efficient catalysts for the OER.
Project description:Hydrogen production technology by water splitting has been heralded as an effective means to alleviate the envisioned energy crisis. However, the overall efficiency of water splitting is limited by the effectiveness of the anodic oxygen evolution reaction (OER) due to the high energy barrier of the 4e- process. The key to addressing this challenge is the development of high-performing catalysts. Transition-metal hydroxides with high intrinsic activity and stability have been widely studied for this purpose. Herein, we report a gelatin-induced structure-directing strategy for the preparation of a butterfly-like FeNi/Ni heterostructure (FeNi/Ni HS) with excellent catalytic performance. The electronic interactions between Ni2+ and Fe3+ are evident both in the mixed-metal "torso" region and at the "torso/wing" interface with increasing Ni3+ as a result of electron transfer from Ni2+ to Fe3+ mediated by the oxo bridge. The amount of Ni3+ also increases in the "wings", which is believed to be a consequence of charge balancing between Ni and O ions due to the presence of Ni vacancies upon formation of the heterostructure. The high-valence Ni3+ with enhanced Lewis acidity helps strengthen the binding with OH- to afford oxygen-containing intermediates, thus accelerating the OER process. Direct evidence of FeNi/Ni HS facilitating the formation of the Ni-OOH intermediate was provided by in situ Raman studies; the intermediate was produced at lower oxidation potentials than when Ni2(CO3)(OH)2 was used as the reference. The Co congener (FeCo/Co HS), prepared in a similar fashion, also showed excellent catalytic performance.
Project description:One pot synthesis of RhCu alloy truncated octahedral nanoframes, Cu@Rh core-shell nanoparticles, and a bundle of five RhCu nanowires is demonstrated. The RhCu alloy 3D nanoframe, in particular, exhibits excellent catalytic activity toward the oxygen evolution reaction under alkaline conditions.
Project description:The quest for developing next-generation non-precious electrocatalysts has risen in recent times. Herein, we have designed and developed a low cost electrocatalyst by a ligand-assisted synthetic strategy in an aqueous medium. An oxalate ligand-assisted non-oxide electrocatalyst was developed by a simple wet-chemical technique for alkaline water oxidation application. The synthetic parameters for the preparation of nickel-cobalt oxalate (Ni2.5Co5C2O4) were optimized, such as the metal precursor (Ni/Co) ratio, oxalic acid amount, reaction temperature, and time. Microstructural analysis revealed a mesoporous block-like architecture for nickel-cobalt oxalate (Ni2.5Co5C2O4). The required overpotential of Ni2.5Co5C2O4 for the alkaline oxygen evolution reaction (OER) was found to be 330 mV for achieving 10 mA cmgeo -2, which is superior to that of NiC2O4, CoC2O4, NiCo2O4 and the state-of-the-art RuO2. The splendid performance of Ni2.5Co5C2O4 was further verified by its low charge transfer resistance, impressive stability performance, and 87% faradaic efficiency in alkaline medium (pH = 14). The improved electrochemical activity was further attributed to double layer capacitance (C dl), which indefinitely divulged the inferiority of NiCo2O4 compared to Ni2.5Co5C2O4 for the alkaline oxygen evolution reaction (OER). The obtained proton reaction order (ρ RHE) was about 0.80, thus indicating the proton decoupled electron transfer (PDET) mechanism for OER in alkaline medium. Post-catalytic investigation revealed the formation of a flake-like porous nanostructure, indicating distinct transformation in morphology during the alkaline OER process. Further, XPS analysis demonstrated complete oxidation of Ni2+ and Co2+ centres into Ni3+ and Co3+, respectively under high oxidation potential, thereby indicating active site formation throughout the microstructural network. Additionally, from BET-normalised LSV investigation, the intrinsic activity of Ni2.5Co5C2O4 was also found to be higher than that of NiCo2O4. Finally, Ni2.5Co5C2O4 delivered a TOF value of around 3.28 × 10-3 s-1, which is 5.56 fold that of NiCo2O4 for the alkaline OER process. This report highlights the unique benefit of Ni2.5Co5C2O4 over NiCo2O4 for the alkaline OER. The structure-catalytic property relationship was further elucidated using density functional theory (DFT) study. To the best of our knowledge, nickel-cobalt oxalate (Ni2.5Co5C2O4) was introduced for the first time as a non-precious non-oxide electrocatalyst for alkaline OER application.
Project description:Here, we report the synthesis of nickel nanoparticles thermally encapsulated in multiwalled carbon nanotubes (MWCNTs) and its utility in alkaline water splitting by combining with composite thermoset anion-exchange membrane. Ni@MWCNT displayed both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). It provided 10 mA cm-2 current density at an overpotential of 300 mV for OER and 254 mV for HER on a glassy carbon electrode, respectively. Base-catalyzed N-methly-4-piperidone-formaldehyde-based prepolymer was grafted on to poly(vinyl alcohol) and cross-linked via thermal annealing followed by quaternization using methyl iodide to obtain thermoset anion exchange membrane (NMPi). Composite NMPi membranes were synthesized using additives tetraethyl orthosilicate (TEOS) and zirconium oxychloride. The water splitting performance on the fabricated membrane electrode assembly was tested and compared with commercially available Neosepta membrane. The obtained faradic efficacy of the water splitting was 94.33% for ZrO2-NMPi membrane followed by 80.23%, 77.70%, and 65.10% for SiO2-NMPi, NMPi, and Neosepta membranes, respectively. The best membrane ZrO2-NMPi achieved maximum current density of ∼0.776 A cm-2 in 5 M KOH electrolyte at 80 °C and 2 V applied constant voltage. The excellent alkaline stability of MEA indicates its potential utility in hydrogen generation applications.
Project description:The development of non-precious trimetallic electrocatalysts exhibiting high activity and stability is a promising strategy for fabricating efficient electrocatalysts for the oxygen evolution reaction (OER). In this study, trimetallic nitrogen-incorporated CoNiFe (N-CoNiFe) was produced to solve the low OER efficiency using a facile co-precipitation method in the presence of ethanolamine (EA) ligands. A series of CoNiFe catalysts at different EA concentrations were also investigated to determine the effects of the ligand in the co-precipitation of a trimetallic system. The introduction of an optimized EA concentration (20 mM) improved the electrocatalytic performance of N-CoNiFe dramatically, with an overpotential of 318 mV at 10 mA cm-2 in 1.0 M KOH and a Tafel slope of 72.2 mV dec-1. In addition, N-CoNiFe shows high durability in the OER process with little change in the overpotential (ca. 16.0 mV) at 10 mA cm-2 after 2000 cycles, which was smaller than that for commercial Ir/C (38.0 mV).
Project description:The integration of multiple elements in a high-entropy state is crucial in the design of high-performance, durable electrocatalysts. High-entropy metal hydroxide organic frameworks (HE-MHOFs) are synthesized under mild solvothermal conditions. This novel crystalline metal-organic framework (MOF) features a random, homogeneous distribution of cations within high-entropy hydroxide layers. HE-MHOF exhibits excellent electrocatalytic performance for the oxygen evolution reaction (OER), reaching a current density of 100 mA cm-2 at ≈1.64 VRHE, and demonstrates remarkable durability, maintaining a current density of 10 mA cm-2 for over 100 h. Notably, HE-MHOF outperforms precious metal-based electrocatalysts despite containing only ≈60% OER active metals. Ab initio calculations and operando X-ray absorption spectroscopy (XAS) demonstrate that the high-entropy catalyst contains active sites that facilitate a multifaceted OER mechanism. This study highlights the benefits of high-entropy MOFs in developing noble metal-free electrocatalysts, reducing reliance on precious metals, lowering metal loading (especially for Ni, Co, and Mn), and ultimately reducing costs for sustainable water electrolysis technologies.
Project description:Covalent triazine frameworks (CTFs) are little investigated, albeit they are promising candidates for electrocatalysis, especially for the oxygen evolution reaction (OER). In this work, nickel nanoparticles (from Ni(COD)2) were supported on CTF-1 materials, which were synthesized from 1,4-dicyanobenzene at 400 °C and 600 °C by the ionothermal method. CTF-1-600 and Ni/CTF-1-600 show high catalytic activity towards OER and a clear activity for the electrochemical oxygen reduction reaction (ORR). Ni/CTF-1-600 requires 374 mV overpotential in OER to reach 10 mA/cm2, which outperforms the benchmark RuO2 catalyst, which requires 403 mV under the same conditions. Ni/CTF-1-600 displays an OER catalytic activity comparable with many nickel-based electrocatalysts and is a potential candidate for OER. The same Ni/CTF-1-600 material shows a half-wave potential of 0.775 V for ORR, which is slightly lower than that of commercial Pt/C (0.890 V). Additionally, after accelerated durability tests of 2000 cycles, the material showed only a slight decrease in activity towards both OER and ORR, demonstrating its superior stability.
Project description:Although porphyry systems like metallo-phthalocynine are recognized as promising molecular models for electrocatalytic oxygen reduction reaction (ORR), their poor durability and methanol tolerance are still challenges and need improvement before being considered for practical applications. Herein, we successfully designed and constructed a Fe-phthalocyanine-derived highly conjugated 2D covalent organic framework (2D FePc-COF), using octa-amino-Fe-phthalocyanine (OA-FePc) and cyclohexanone as precursors. The prepared 2D FePc-COF was characterized via multiple analytic techniques. The electrochemical studies indicated that prepared 2D FePc-COF was far more superior to OA-FePc and 20% Pt/C, displaying anodic shift of 100 and 50 mV (vs RHE) in formal potential, respectively. Moreover, this catalyst also demonstrated excellent methanol tolerance and durability (over 10,000 CV cycles). Theoretical investigations revealed that due to extended conjugation and elimination of electron donating groups (-NH2), the shifting of dz2-orbital (Fe) energy took nearer to π*-orbital (O2), allowing optimum coupling of both the orbitals, thereby enhancing 4e- ORR. This work demonstrates the art of molecular design, aiming at improving catalytic activity of macrocyclic molecular systems towards ORR.