Project description:Extreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.
Project description:Wind-generated waves are dominant drivers of coastal dynamics and vulnerability, which have considerable impacts on littoral ecosystems and socioeconomic activities. It is therefore paramount to improve coastal hazards predictions through the better understanding of connections between wave activity and climate variability. In the Pacific, the dominant climate mode is El Niño Southern Oscillation (ENSO), which has known a renaissance of scientific interest leading to great theoretical advances in the past decade. Yet studies on ENSO's coastal impacts still rely on the oversimplified picture of the canonical dipole across the Pacific. Here, we consider the full ENSO variety to delineate its essential teleconnection pathways to tropical and extratropical storminess. These robust seasonally modulated relationships allow us to develop a mathematical model of coastal wave modulation essentially driven by ENSO's complex temporal and spatial behavior. Accounting for this nonlinear climate control on Pan-Pacific wave activity leads to a much better characterization of waves' seasonal to interannual variability (+25% in explained variance) and intensity of extremes (+60% for strong ENSO events), therefore paving the way for significantly more accurate forecasts than formerly possible with the previous baseline understanding of ENSO's influence on coastal hazards.
Project description:This study investigates extremes of wave climate in the western North Pacific (WNP) as significant responses to modes of climate variability: the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Few studies have explicitly investigated significant wave height in this context, and hence, the aim of the present study is to investigate and quantify the responses to a simulated wave data set over the WNP from 1979-2009 by focusing on the combined influences of the ENSO and PDO during the boreal summer. We conducted a composite analysis of sea surface temperatures, sea-level pressure, and extreme anomalies of wave power density (Pw) on different phase combinations of the ENSO and the PDO, and also analyzed the effects of a latitudinal shift of the ITCZ for composite samples with respect to simulated tropical storm (TS) activities. The results demonstrate that the ENSO played a primarily positive role in intensifying anomalous wave climate, while the PDO had the opposite effect. The responses of the peak wave-period were linked to a strengthened anomalous low-pressure and a cooling of sea surface temperature anomalies. The PDO played a significant role in strengthening or weakening of the effects of the ENSO on Pw, thus confirming the findings of previous studies. We found that responses were dependent on whether ENSO and PDO were in or out of phase. These responses can be described by a strengthening of the southeast trade winds that blow across the equator with respect to a latitudinal shift of the Intertropical Convergence Zone (ITCZ). Our findings contribute to the understanding of a relationship between modes of climate variability and TS activities with respect to the status of the ITCZ over the WNP, which can be relevant factors in the lifetime of wave power and related wave parameters in the WNP during the boreal summer.
Project description:Land and sea surface temperatures, precipitation, and storm tracks in North America and the North Pacific are controlled to a large degree by atmospheric variability associated with the Pacific North American (PNA) pattern. The modern instrumental record indicates a trend toward a positive PNA phase in recent decades, which has led to accelerated warming and snowpack decline in northwestern North America. The brevity of the instrumental record, however, limits our understanding of long-term PNA variability and its directional or cyclic patterns. Here we develop a 937-y-long reconstruction of the winter PNA based on a network of annually resolved tree-ring proxy records across North America. The reconstruction is consistent with previous regional records in suggesting that the recent persistent positive PNA pattern is unprecedented over the past millennium, but documents patterns of decadal-scale variability that contrast with previous reconstructions. Our reconstruction shows that PNA has been strongly and consistently correlated with sea surface temperature variation, solar irradiance, and volcanic forcing over the period of record, and played a significant role in translating these forcings into decadal-to-multidecadal hydroclimate variability over North America. Climate model ensembles show limited power to predict multidecadal variation in PNA over the period of our record, raising questions about their potential to project future hydroclimatic change modulated by this circulation pattern.
Project description:Changing climate will impact species' ranges only when environmental variability directly impacts the demography of local populations. However, measurement of demographic responses to climate change has largely been limited to single species and locations. Here we show that amphibian communities are responsive to climatic variability, using >500,000 time-series observations for 81 species across 86 North American study areas. The effect of climate on local colonization and persistence probabilities varies among eco-regions and depends on local climate, species life-histories, and taxonomic classification. We found that local species richness is most sensitive to changes in water availability during breeding and changes in winter conditions. Based on the relationships we measure, recent changes in climate cannot explain why local species richness of North American amphibians has rapidly declined. However, changing climate does explain why some populations are declining faster than others. Our results provide important insights into how amphibians respond to climate and a general framework for measuring climate impacts on species richness.
Project description:Mounting evidence suggests that climate change, agricultural intensification and disease are impacting bumblebee health and contributing to species' declines. Identifying how these factors impact insect communities at large spatial and temporal scales is difficult, partly because species may respond in different ways. Further, the necessary data must span large spatial and temporal scales, which usually means they comprise aggregated, presence-only records collected using numerous methods (e.g. diversity surveys, educational collections, citizen-science projects, standardized ecological surveys). Here, we use occupancy models, which explicitly correct for biases in the species observation process, to quantify the effect of changes in temperature, precipitation and floral resources on bumblebee site occupancy over the past 12 decades in North America. We find no evidence of genus-wide declines in site occupancy, but do find that occupancy is strongly related to temperature, and is only weakly related to precipitation or floral resources. We also find that more species are likely to be climate change 'losers' than 'winners' and that this effect is primarily associated with changing temperature. Importantly, all trends were highly species-specific, highlighting that genus or community-wide measures may not reflect diverse species-specific patterns that are critical in guiding allocation of conservation resources.
Project description:We present historical monthly spatial models of temperature and precipitation generated from the North American dataset version "j" from the National Oceanic and Atmospheric Administration's (NOAA's) National Centres for Environmental Information (NCEI). Monthly values of minimum/maximum temperature and precipitation for 1901-2016 were modelled for continental United States and Canada. Compared to similar spatial models published in 2006 by Natural Resources Canada (NRCAN), the current models show less error. The Root Generalized Cross Validation (RTGCV), a measure of the predictive error of the surfaces akin to a spatially averaged standard predictive error estimate, averaged 0.94 °C for maximum temperature models, 1.3 °C for minimum temperature and 25.2% for total precipitation. Mean prediction errors for the temperature variables were less than 0.01 °C, using all stations. In comparison, precipitation models showed a dry bias (compared to recorded values) of 0.5 mm or 0.7% of the surface mean. Mean absolute predictive errors for all stations were 0.7 °C for maximum temperature, 1.02 °C for minimum temperature, and 13.3 mm (19.3% of the surface mean) for monthly precipitation.
Project description:Airborne pollen has major respiratory health impacts and anthropogenic climate change may increase pollen concentrations and extend pollen seasons. While greenhouse and field studies indicate that pollen concentrations are correlated with temperature, a formal detection and attribution of the role of anthropogenic climate change in continental pollen seasons is urgently needed. Here, we use long-term pollen data from 60 North American stations from 1990 to 2018, spanning 821 site-years of data, and Earth system model simulations to quantify the role of human-caused climate change in continental patterns in pollen concentrations. We find widespread advances and lengthening of pollen seasons (+20 d) and increases in pollen concentrations (+21%) across North America, which are strongly coupled to observed warming. Human forcing of the climate system contributed ∼50% (interquartile range: 19-84%) of the trend in pollen seasons and ∼8% (4-14%) of the trend in pollen concentrations. Our results reveal that anthropogenic climate change has already exacerbated pollen seasons in the past three decades with attendant deleterious effects on respiratory health.
Project description:Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.
Project description:The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10-8, 1.59 × 10-8, and 2.70 × 10-8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10-9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species' slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events.