Project description:Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.
Project description:The Pomeranz-Fritsch reaction and its Schlittler-Müller modification were successfully applied in the Ugi postcyclization strategy by using orthogonally protected aminoacetaldehyde diethyl acetal and complementary electron rich building blocks. Several scaffolds, including isoquinolines, carboline, alkaloid-like tetrazole-fused tetracyclic compounds, and benzo[ d]azepinone scaffolds, were synthesized in generally moderate to good yield. All our syntheses provide a short MCR-based sequence to novel or otherwise difficult to access scaffolds. Hence, we foresee multiple applications of these synthesis technologies.
Project description:Non-aqueous Pickering emulsions of 16-240 μm diameter have been prepared using diblock copolymer worms with ethylene glycol as the droplet phase and an n-alkane as the continuous phase. Initial studies using n-dodecane resulted in stable emulsions that were significantly less turbid than conventional water-in-oil emulsions. This is attributed to the rather similar refractive indices of the latter two phases. By utilizing n-tetradecane as an alternative oil that almost precisely matches the refractive index of ethylene glycol, almost isorefractive ethylene glycol-in-n-tetradecane Pickering emulsions can be prepared. The droplet diameter and transparency of such emulsions can be systematically varied by adjusting the worm copolymer concentration.
Project description:Finally stereoselective: Enantioselective variations have been developed for many multicomponent reactions; however, it has been missing for the Ugi four-component reaction. This has now changed with the discovery of an efficient catalytic enantioselective variant for the four-component reaction of isocyanides, primary amines, aldehydes or ketones, and carboxylic acids.
Project description:Ugi reactions and related variations are proven to be atom and step-economic strategies for construction of highly valuable peptide-like skeletons and nitrogenous heterocycles. The development of structurally diverse range of novel catalytic systems and the discovery of new approaches to accommodate a broader scope of terminating reagents for asymmetric Ugi four-component reaction is still in high demand. Here, we report a strategy that enables enantioselective Ugi four-component and Ugi-azide reactions employing anionic stereogenic-at-cobalt(III) complexes as catalysts. The key nitrilium intermediates, generated through the nucleophilic addition of isocyanides to the chiral ion-pair which consists of stereogenic-at-cobalt(III) complexes counteranion and a protonated iminium, are trapped by either carboxylic acids or in situ-generated hydrazoic acid, delivering α-acylamino amides and α-aminotetrazoles in good to excellent enantioselectivities (up to 99:1 e.r.).
Project description:We report here selective Tsuji-Trost type allylation of Ugi adducts using a strategy based on the enhanced nucleophilicity of amide dianions. Ugi adducts derived from aromatic aldehydes were easily allylated at their peptidyl position with allyl acetate in the presence of palladium catalysts. These substitutions were compared to more classical transition metal free allylations using allyl bromides.
Project description:Multienzyme cascade biocatalysis is an efficient synthetic process, avoiding the isolation/purification of intermediates and shifting the reaction equilibrium to the product side.. However, multienzyme systems are often limited by their incompatibility and cross-reactivity. Herein, we report a multi-responsive emulsion to proceed multienzyme reactions sequentially for high reactivity. The emulsion is achieved using a CO2 , pH, and thermo-responsive block copolymer as a stabilizer, allowing the on-demand control of emulsion morphology and phase composition. Applying this system to a three-step cascade reaction enables the individual optimal condition for each enzyme, and a high overall conversion (ca. 97 % of the calculated limit) is thereby obtained. Moreover, the multi-responsiveness of the emulsion allows the facile and separate yielding/recycling of products, polymers and active enzymes. Besides, the system could be scaled up with a good yield.
Project description:Herein we describe a versatile approach for the synthesis of acylhydrazino-peptomers, a new class of peptidomimetics. The key idea in this approach is based on a simple route using a one-pot hydrazino-Ugi four-component reaction followed by a hydrazinolysis or hydrolysis reaction and subsequent hydrazino-Ugi reaction or classical Ugi reaction for the construction of acyclic acylhydrazino-peptomers. The consecutive multicomponent reactions produced a variety of acylhydrazino-peptomers in moderate to excellent yields (47-90%). These compounds are multifunctional intermediates that can be further functionalized to obtain new peptidomimetics with potential biological activity.
Project description:Microscale hydrogels have been shown to be beneficial for various applications such as tissue engineering and drug delivery. A key aspect in these applications is the spatial organization of biological entities or chemical compounds within hydrogel microstructures. For this purpose, sequentially patterned microgels can be used to spatially organize either living materials to mimic biological complexity or multiple chemicals to design functional microparticles for drug delivery. Photolithographic methods are the most common way to pattern microscale hydrogels but are limited to photocrosslinkable polymers. So far, conventional micromolding approaches use static molds to fabricate structures, limiting the resulting shapes that can be generated. Herein, we describe a dynamic micromolding technique to fabricate sequentially patterned hydrogel microstructures by exploiting the thermoresponsiveness of poly(N-isopropylacrylamide)-based micromolds. These responsive micromolds exhibited shape changes under temperature variations, facilitating the sequential molding of microgels at two different temperatures. We fabricated multicompartmental striped, cylindrical, and cubic microgels that encapsulated fluorescent polymer microspheres or different cell types. These responsive micromolds can be used to immobilize living materials or chemicals into sequentially patterned hydrogel microstructures which may potentially be useful for a range of applications at the interface of chemistry, materials science and engineering, and biology.