Project description:BackgroundEfforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images.MethodsThis retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1-18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests.ResultsDLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture.ConclusionCompared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.
Project description:We investigated the effect of deep learning-based image reconstruction (DLIR) compared to iterative reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V 30%, 60% and 90%) and DLIR (low, medium and high strength). Contrast-to-noise ratio (CNR) served as the primary parameter of objective image quality. Subgroup analyses were performed for normal weight, overweight and obese individuals. For patients with confirmed PE (n = 40), we further measured PE-specific CNR. Subjective image quality was assessed independently by two experienced radiologists. CNR was lowest for FBP and enhanced with increasing levels of ASiR-V and, even more with increasing strength of DLIR. High strength DLIR resulted in an additional improvement in CNR by 29-67% compared to ASiR-V 90% (p < 0.05). PE-specific CNR increased by 75% compared to ASiR-V 90% (p < 0.05). Subjective image quality was significantly higher for medium and high strength DLIR compared to all other image reconstructions (p < 0.05). In CT pulmonary angiography, DLIR significantly outperforms iterative reconstruction for increasing objective and subjective image quality. This may allow for further reductions in radiation exposure in suspected PE.
Project description:ObjectivesTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.Materials and methodsOncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.ResultsFifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.ConclusionsDLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.Clinical relevance statementDeep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.Key points• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
Project description:PurposeTo compare the image quality between a deep learning-based image reconstruction algorithm (DLIR) and an adaptive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT.MethodsHead CT scans from 94 consecutive trauma patients were included. Images were reconstructed with ASiR-V 50% and the DLIR strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The image quality was assessed quantitatively and qualitatively and compared between the different reconstruction algorithms. Inter-reader agreement was assessed by weighted kappa.ResultsDLIR-M and DLIR-H demonstrated lower image noise (p < 0.001 for all pairwise comparisons), higher SNR of up to 82.9% (p < 0.001), and higher CNR of up to 53.3% (p < 0.001) compared to ASiR-V. DLIR-H outperformed other DLIR strengths (p ranging from < 0.001 to 0.016). DLIR-M outperformed DLIR-L (p < 0.001) and ASiR-V (p < 0.001). The distribution of reader scores for DLIR-M and DLIR-H shifted towards higher scores compared to DLIR-L and ASiR-V. There was a tendency towards higher scores with increasing DLIR strengths. There were fewer non-diagnostic CT series for DLIR-M and DLIR-H compared to ASiR-V and DLIR-L. No images were graded as non-diagnostic for DLIR-H regarding intracranial hemorrhage. The inter-reader agreement was fair-good between the second most and the less experienced reader, poor-moderate between the most and the less experienced reader, and poor-fair between the most and the second most experienced reader.ConclusionThe image quality of trauma head CT series reconstructed with DLIR outperformed those reconstructed with ASiR-V. In particular, DLIR-M and DLIR-H demonstrated significantly improved image quality and fewer non-diagnostic images. The improvement in qualitative image quality was greater for the second most and the less experienced readers compared to the most experienced reader.
Project description:ObjectiveTo evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images.Materials and methodsThis retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM).ResultsLDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581).ConclusionOverall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.
Project description:Background This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). Methods We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR. Intravascular image noise, edge sharpness, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified for ascending aorta, descending aorta, abdominal aorta and iliac arteries. Two readers (one radiologist and one interventional cardiologist) scored task-specific subjective image quality on a five-point scale. Results DLIR significantly reduced median image noise by 29–57% at all anatomical locations (all P<0.001). Accordingly, median SNR improved by 44–133% (all P<0.001) and median CNR improved by 44–125% (all P<0.001). DLIR significantly improved subjective image quality for all four pre-specified TAVI-specific tasks (measuring the annulus, assessing valve morphology and calcifications, the coronary ostia, and the suitability of the aorto-iliac access route) for both the radiologist and the interventional cardiologist (P≤0.001). Measurements of the aortic annulus circumference, area and diameter did not differ between ASIR-V and DLIR reconstructions (all P>0.05). Conclusions DLIR significantly improves objective and subjective image quality in TAVI planning CT compared to a state-of-the-art iterative reconstruction without affecting measurements of the aortic annulus. This may provide an opportunity for further reductions in contrast medium volume in this population.
Project description:Recently, deep neural networks have been widely and successfully applied in computer vision tasks and have attracted growing interest in medical imaging. One barrier for the application of deep neural networks to medical imaging is the need for large amounts of prior training pairs, which is not always feasible in clinical practice. This is especially true for medical image reconstruction problems, where raw data are needed. Inspired by the deep image prior framework, in this paper, we proposed a personalized network training method where no prior training pairs are needed, but only the patient's own prior information. The network is updated during the iterative reconstruction process using the patient-specific prior information and measured data. We formulated the maximum-likelihood estimation as a constrained optimization problem and solved it using the alternating direction method of multipliers algorithm. Magnetic resonance imaging guided positron emission tomography reconstruction was employed as an example to demonstrate the effectiveness of the proposed framework. Quantification results based on simulation and real data show that the proposed reconstruction framework can outperform Gaussian post-smoothing and anatomically guided reconstructions using the kernel method or the neural-network penalty.
Project description:The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical phantom data set with and without a catheter and on two porcine models using qualitative and quantitative measures. The quantitative results of the phantom experiments show that if no dense object is present within the scan field of view, the quality of the FDK initial images is sufficient for motion estimation via 3D/3D registration. When a catheter or pacing electrode is present, the shadow of these objects needs to be removed before the initial image reconstruction. An additional bilateral filter shows no major improvement with respect to the final motion-compensated reconstruction quality. The results with respect to image quality of the cathFDK, cathFFDK and FV images are comparable. In conclusion, in terms of computational complexity, the algorithm of choice is the cathFDK algorithm.