Project description:Inhibition of NLRP3 inflammasome activation produces potent therapeutic effects in a wide array of inflammatory diseases. Bergapten (BeG), a furocoumarin phytohormone present in many herbal medicines and fruits, exibits anti-inflammatory activity. In this study we characterized the therapeutic potential of BeG against bacterial infection and inflammation-related disorders, and elucidated the underlying mechanisms. We showed that pre-treatment with BeG (20 μM) effectively inhibited NLRP3 inflammasome activation in both lipopolysaccharides (LPS)-primed J774A.1 cells and bone marrow-derived macrophages (BMDMs), evidenced by attenuated cleaved caspase-1 and mature IL-1β release, as well as reduced ASC speck formation and subsequent gasdermin D (GSDMD)-mediated pyroptosis. Transcriptome analysis revealed that BeG regulated the expression of genes involved in mitochondrial and reactive oxygen species (ROS) metabolism in BMDMs. Moreover, BeG treatment reversed the diminished mitochondrial activity and ROS production after NLRP3 activation, and elevated the expression of LC3-II and enhanced the co-localization of LC3 with mitochondria. Treatment with 3-methyladenine (3-MA, 5 mM) reversed the inhibitory effects of BeG on IL-1β, cleaved caspase-1 and LDH release, GSDMD-N formation as well as ROS production. In mouse model of Escherichia coli-induced sepsis and mouse model of Citrobacter rodentium-induced intestinal inflammation, pre-treatment with BeG (50 mg/kg) significantly ameliorated tissue inflammation and injury. In conclusion, BeG inhibits NLRP3 inflammasome activation and pyroptosis by promoting mitophagy and maintaining mitochondrial homeostasis. These results suggest BeG as a promising drug candidate for the treatment of bacterial infection and inflammation-related disorders.
Project description:The NLRP3 inflammasome has a fundamental role in host defence against microbial pathogens and its deregulation may cause diverse inflammatory diseases. NLRP3 protein expression is a rate-limiting step for inflammasome activation, thus its expression must be tightly controlled to maintain immune homeostasis and avoid detrimental effects. However, how NLRP3 expression is regulated remains largely unknown. In this study, we identify E3 ubiquitin ligase TRIM31 as a feedback suppressor of NLRP3 inflammasome. TRIM31 directly binds to NLRP3, promotes K48-linked polyubiquitination and proteasomal degradation of NLRP3. Consequently, TRIM31 deficiency enhances NLRP3 inflammasome activation and aggravates alum-induced peritonitis in vivo. Furthermore, TRIM31 deficiency attenuates the severity of dextran sodium sulfate (DSS)-induced colitis, an inflammatory bowel diseases model in which NLRP3 possesses protective roles. Thus, our research describes a mechanism by which TRIM31 limits NLRP3 inflammasome activity under physiological conditions and suggests TRIM31 as a potential therapeutic target for the intervention of NLRP3 inflammasome related diseases.
Project description:BackgroundChronic neuropathic pain is a frequent sequel to peripheral nerve injury and maladaptive nervous system function. Divanillyl sulfone (DS), a novel structural derivative of 4,4'-dihydroxydibenzyl sulfoxide from a traditional Chinese medicine Gastrodia elata with anti-nociceptive effects, significantly alleviated neuropathic pain following intrathecal injection. Here, we aimed to investigate the underlying mechanisms of DS against neuropathic pain.MethodsA chronic constrictive injury (CCI) mouse model of neuropathic pain induced by sciatic nerve ligation was performed to evaluate the effect of DS by measuring the limb withdrawal using Von Frey filament test. Immunofluorescence staining was used to assess the cell localizations and expressions of Iba-1, ASC, NLRP3, and ROS, the formation of autolysosome. The levels of NLRP3-related proteins (caspase-1, NLRP3, and IL-1β), mitophagy-related proteins (LC3, Beclin-1, and p62), and apoptosis-related proteins (Bcl-XL and Bax) were detected by Western blotting. The apoptosis of BV-2 cell and caspase activity were evaluated by flow cytometry.ResultsDS significantly alleviated the neuropathic pain by increasing the mechanical withdrawal threshold and inhibiting the activation of NLRP3 in CCI-induced model mice. Our findings indicated that DS promoted the mitophagy by increasing the LC3II and Beclin 1 and decreasing the levels of p62 protein in BV-2 cell. This is accompanied by the inhibition of NLRP3 activation, which was shown as inhibited the expression of NLRP3 in lysates as well as the secretion of mature caspase-1 p10 and IL-1β p17 in supernatants in cultured BV-2 microglia. In addition, DS could promote mitophagy-induced improvement of dysfunctional mitochondria by clearing intracellular ROS and restoring mitochondrial membrane potential.ConclusionTogether, our findings demonstrated that DS ameliorate chronic neuropathic pain in mice by suppressing NLRP3 inflammasome activation induced by mitophagy in microglia. DS may be a promising therapeutic agent for chronic neuropathic pain.
Project description:The NLRP3 inflammasome, a critical component of the innate immune system, induces caspase-1 activation and interleukin (IL)-1β maturation in response to microbial infection and cellular damage. However, aberrant activation of the NLRP3 inflammasome contributes to the pathogenesis of several inflammatory disorders, including cryopyrin-associated periodic syndromes, Alzheimer's disease, type 2 diabetes, and atherosclerosis. Here, we identify the receptor for activated protein C kinase 1 (RACK1) as a component of the NLRP3 complexes in macrophages. RACK1 interacts with NLRP3 and NEK7 but not ASC. Suppression of RACK1 expression abrogates caspase-1 activation and IL-1β release in response to NLRP3- but not NLRC4- or AIM2-activating stimuli. This RACK1 function is independent of its ribosomal binding activity. Mechanistically, RACK1 promotes the active conformation of NLRP3 induced by activating stimuli and subsequent inflammasome assembly. These results demonstrate that RACK1 is a critical mediator for NLRP3 inflammasome activation.
Project description:Zearalenone (ZEA) is a mycotoxin that has several adverse effects on most mammalian species. However, the effects of ZEA on macrophage-mediated innate immunity during infection have not been examined. In the present study, bacterial lipopolysaccharides (LPS) were used to induce the activation of macrophages and evaluate the effects of ZEA on the inflammatory responses and inflammation-associated signaling pathways. The experimental results indicated that ZEA suppressed LPS-activated inflammatory responses by macrophages including attenuating the production of proinflammatory mediators (nitric oxide (NO) and prostaglandin E2 (PGE2)), decreased the secretion of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6), inhibited the activation of c-Jun amino-terminal kinase (JNK), p38 and nuclear factor-κB (NF-κB) signaling pathways, and repressed the nucleotide-binding and oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. These results indicated that mycotoxin ZEA attenuates macrophage-mediated innate immunity upon LPS stimulation, suggesting that the intake of mycotoxin ZEA-contaminated food might result in decreasing innate immunity, which has a higher risk of adverse effects during infection.
Project description:Accumulating evidence suggests that aberrant innate immunity is closely linked to metabolic diseases, including type 2 diabetes. In particular, activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and subsequent secretion of interleukin 1β (IL-1β) are critical determinants that precipitate disease progression. The seeds of annatto (Bixa orellana L.) contain tocotrienols (T3s), mostly (>90%) in the δ form (δT3). The aim of this study was to determine whether annatto T3 is effective in attenuating NLRP3 inflammasome activation in macrophages. Our results showed that annatto δT3 significantly attenuated NLRP3 inflammasome by decreasing IL-1β reporter activity, IL-1β secretion, and caspase-1 cleavage against lipopolysaccharide (LPS) followed by nigericin stimulation. With regard to mechanism, annatto δT3 1) reduced LPS-mediated priming of the inflammasome and 2) dampened reactive oxygen species production, the second signal required for assembly of the NLRP3 inflammasome in macrophages. Our work suggests that annatto δT3 may hold therapeutic potential for delaying the onset of NLRP3 inflammasome-associated chronic metabolic diseases.
Project description:Inflammasome, a multiprotein complex that regulates interleukin (IL)-1β secretion and pyroptosis, participates in numerous inflammatory diseases, including sepsis, atherosclerosis and type-2 diabetes. Investigating the inflammasome regulation is therefore crucial to understand the inflammasome activation and develop treatment for the related diseases. In addition, it remains unknown how the inflammasome is naturally suppressed during the inflammatory process. The present study aimed to investigate the role of resolvin D2 (RvD2), an innate suppressor of inflammation produced from essential ω3-polyunsaturated fatty acids, in the activation of the inflammasome via in vitro and in vivo experiments. The effects of RvD2 on the cytokine production of inflammasome-related peritonitis were determined, and the NLRP3 inflammasome activation was investigated in the presence of RvD2. Moreover, the potential mechanisms underlying RvD2 in NLRP3 inflammasome regulation through autophagy and proteasome were investigated. The results of the present study demonstrated that RvD2 suppressed inflammasome-mediated peritonitis in vivo and regulated the NLR family pyrin domain containing 3 (NLRP3) inflammasome, but not in absent in melanoma 2 (AIM2), NLR family CARD domain containing 4 (NLRC4) inflammasomes. Mechanistically, RvD2 was found to promote the degradation of NLRP3 through autophagy, and the inhibition of autophagy could reverse the RvD2-mediated suppression of NLRP3 inflammasome in vitro and partially reverse the inflammasome-mediated peritonitis in vivo. In summary, the present study reported the negative regulation of NLRP3 inflammasome activation by RvD2. The findings from this study may extend the knowledge of the innate regulation of inflammasome and highlight a possible target for inflammasome-related diseases.
Project description:NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation.
Project description:Tanshinone IIA (Tan IIA) possesses potent anti-atherogenic function, however, the underlying pharmacological mechanism remains incompletely understood. Previous studies suggest that oxidized LDL (oxLDL)-induced NLRP3 (NOD-like receptor (NLR) family, pyrin domain-containing protein 3) inflammasome activation in macrophages plays a vital role in atherogenesis. Whether the anti-atherogenic effect of Tan IIA relies on the inhibition of the NLRP3 inflammasome has not been investigated before. In this study, we found that Tan IIA treatment of high-fat diet fed ApoE-/- mice significantly attenuated NLRP3 inflammasome activation in vivo. Consistently, Tan IIA also potently inhibited oxLDL-induced NLRP3 inflammasome activation in mouse macrophages. Mechanically, Tan IIA inhibited NF-κB activation to downregulate pro-interleukin (IL) -1β and NLRP3 expression, and decreased oxLDL-induced expression of lectin-like oxidized LDL receptor-1 (LOX-1) and cluster of differentiation 36 (CD36), thereby attenuating oxLDL cellular uptake and subsequent induction of mitochondrial and lysosomal damage - events that promote the NLRP3 inflammasome assembly. Through regulating both the inflammasome 'priming' and 'activation' steps, Tan IIA potently inhibited oxLDL-induced NLRP3 inflammasome activation, thereby ameliorating atherogenesis.