DksA potentiates direct activation of amino acid promoters by ppGpp.
Ontology highlight
ABSTRACT: Amino acid starvation in Escherichia coli results in a spectrum of changes in gene expression, including inhibition of rRNA and tRNA promoters and activation of certain promoters for amino acid biosynthesis and transport. The unusual nucleotide ppGpp plays an important role in both negative and positive regulation. Previously, we and others suggested that positive effects of ppGpp might be indirect, resulting from the inhibition of rRNA transcription and, thus, liberation of RNA polymerase for binding to other promoters. Recently, we showed that DksA binds to RNA polymerase and greatly enhances direct effects of ppGpp on the negative control of rRNA promoters. This conclusion prompted us to reevaluate whether ppGpp might also have a direct role in positive control. We show here that ppGpp greatly increases the rate of transcription initiation from amino acid promoters in a purified system but only when DksA is present. Activation occurs by stimulation of the rate of an isomerization step on the pathway to open complex formation. Consistent with the model that ppGpp/DksA stimulates amino acid promoters both directly and indirectly in vivo, cells lacking dksA fail to activate transcription from the hisG promoter after amino acid starvation. Our results illustrate how transcription factors can positively regulate transcription initiation without binding DNA, demonstrate that dksA directly affects promoters in addition to those for rRNA, and suggest that some of the pleiotropic effects previously associated with dksA might be ascribable to direct effects of dksA on promoters involved in a wide variety of cellular functions.
SUBMITTER: Paul BJ
PROVIDER: S-EPMC1142371 | biostudies-literature | 2005 May
REPOSITORIES: biostudies-literature
ACCESS DATA