Unknown

Dataset Information

0

An evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules.


ABSTRACT: The DNA of functional cis-regulatory modules displays extensive sequence conservation in comparisons of genomes from modestly distant species. Patches of sequence that are several hundred base pairs in length within these modules are often seen to be 80-95% identical, although the flanking sequence cannot even be aligned. However, it is unlikely that base pairs located between the transcription factor target sites of cis-regulatory modules have sequence-dependent function, and the mechanism that constrains evolutionary change within cis-regulatory modules is incompletely understood. We chose five functionally characterized cis-regulatory modules from the Strongylocentrotus purpuratus (sea urchin) genome and obtained orthologous regulatory and flanking sequences from a bacterial artificial chromosome genome library of a congener, Strongylocentrotus franciscanus. As expected, single-nucleotide substitutions and small indels occur freely at many positions within the regulatory modules of these two species, as they do outside the regulatory modules. However, large indels (>20 bp) are statistically almost absent within the regulatory modules, although they are common in flanking intergenic or intronic sequence. The result helps to explain the patterns of evolutionary sequence divergence characteristic of cis-regulatory DNA.

SUBMITTER: Cameron RA 

PROVIDER: S-EPMC1188003 | biostudies-literature | 2005 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

An evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules.

Cameron R Andrew RA   Chow Suk Hen SH   Berney Kevin K   Chiu Tsz-Yeung TY   Yuan Qiu-Autumn QA   Krämer Alexander A   Helguero Argelia A   Ransick Andrew A   Yun Mirong M   Davidson Eric H EH  

Proceedings of the National Academy of Sciences of the United States of America 20050808 33


The DNA of functional cis-regulatory modules displays extensive sequence conservation in comparisons of genomes from modestly distant species. Patches of sequence that are several hundred base pairs in length within these modules are often seen to be 80-95% identical, although the flanking sequence cannot even be aligned. However, it is unlikely that base pairs located between the transcription factor target sites of cis-regulatory modules have sequence-dependent function, and the mechanism that  ...[more]

Similar Datasets

| S-EPMC1796902 | biostudies-literature
| S-EPMC6211617 | biostudies-literature
| S-EPMC3694643 | biostudies-literature
| S-EPMC2714078 | biostudies-literature
| S-EPMC3541939 | biostudies-literature
| S-EPMC1665632 | biostudies-literature
| S-EPMC6104691 | biostudies-literature
| S-EPMC6652221 | biostudies-literature
| S-EPMC4097164 | biostudies-literature
| S-EPMC4680567 | biostudies-literature