Unknown

Dataset Information

0

Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint.


ABSTRACT: SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.

SUBMITTER: Campaner S 

PROVIDER: S-EPMC1190358 | biostudies-literature | 2005 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint.

Campaner Stefano S   Kaldis Philipp P   Izraeli Shai S   Kirsch Ilan R IR  

Molecular and cellular biology 20050801 15


SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin  ...[more]

Similar Datasets

| S-EPMC2683709 | biostudies-literature
| S-EPMC2993392 | biostudies-literature
| S-EPMC5268738 | biostudies-literature
| S-EPMC2876714 | biostudies-literature
| S-EPMC4773433 | biostudies-literature
| S-EPMC3680734 | biostudies-literature
| S-EPMC3035126 | biostudies-literature
| S-EPMC514925 | biostudies-other
| S-EPMC4146412 | biostudies-literature
| S-EPMC2613107 | biostudies-literature