Project description:Thiol proteins are important in cellular antioxidant defenses and redox signalling. It is postulated that reactive oxidants cause selective thiol oxidation, but relative sensitivities of different cell proteins and critical targets are not well characterized. We exposed Jurkat cells to H2O2 for 10 min and measured changes in reversibly oxidized proteins by labelling with iodoacetamidofluorescein and two-dimensional electrophoresis. At 200 microM H2O2, which caused activation of the MAP (mitogen-activated protein) kinase ERK (extracellular-signal-regulated kinase), growth arrest and apoptosis, relatively few changes were seen. A total of 28 spots were reversibly oxidized (increased labelling intensity) and 24 decreased. The latter included isoforms of peroxiredoxins 1 and 2, which were irreversibly oxidized. Oxidation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was striking, and other affected proteins included glutathione S-transferase P1-1, enolase, a regulatory subunit of protein kinase A, annexin VI, the mitotic checkpoint serine/threonine-protein kinase BUB1beta, HSP90beta (heat-shock protein 90beta) and proteosome components. At 20 microM H2O2, changes were fewer, but GAPDH and peroxiredoxin 2 were still modified. Dinitrochlorobenzene treatment, which inhibited cellular thioredoxin reductase and partially depleted GSH, caused reversible oxidation of several proteins, including thioredoxin 1 and peroxiredoxins 1 and 2. Most changes were distinct from those with H2O2, and changes with H2O2 were scarcely enhanced by dinitrochlorobenzene. Relatively few proteins, including deoxycytidine kinase, nucleoside diphosphate kinase and a proteosome activator subunit, responded only to the combined treatment. Thus most of the effects of H2O2 were not linked to thioredoxin oxidation. Our study has identified peroxiredoxin 2 and GAPDH as two of the most oxidant-sensitive cell proteins and has highlighted how readily peroxiredoxins undergo irreversible oxidation.
Project description:How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H(2)O(2)) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H(2)O(2)-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H(2)O(2)-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F(1)F(0) ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H(2)O(2)-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H(2)O(2) stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H(2)O(2).
Project description:Hydrogen peroxide (H2O2) is an important molecule in biological and environmental systems. In living systems, H2O2 plays essential functions in physical signaling pathways, cell growth, differentiation, and proliferation. Plasmonic nanostructures have attracted significant research attention in the fields of catalysis, imaging, and sensing applications because of their unique properties. Owing to the difference in the reduction potential, silver nanostructures have been proposed for the detection of H2O2. In this work, we demonstrate the Au@Ag nanocubes for the label- and enzyme-free detection of H2O2. Seed-mediated synthesis method was employed to realize the Au@Ag nanocubes with high uniformity. The Au@Ag nanocubes were demonstrated to exhibit the ability to monitor the H2O2 at concentration levels lower than 200 µM with r2 = 0.904 of the calibration curve and the limit of detection (LOD) of 1.11 µM. In the relatively narrow range of the H2O2 at concentration levels lower than 40 µM, the LOD was calculated to be 0.60 µM with r2 = 0.941 of the calibration curve of the H2O2 sensor. This facile fabrication strategy of the Au@Ag nanocubes would provide inspiring insights for the label- and enzyme-free detection of H2O2.
Project description:Accumulation of senescent cells is an important contributor to chronic inflammation upon aging. While the transcription factors driving the inflammatory phenotype of senescent cells have been extensively studies, the triggers of the pro-inflammatory pathways are still incompletely characterized. Here, we show that cells driven into senescence by different routes share a deficiency in RNA degradation activity most correlated with reduced expression of one or several subunits of the RNA exosome. A similar deficiency was also detected in cells exposed to oxidative stress, either acute, by treatment with hydrogen peroxide, or more long-term in a mouse model for mitochondrial suffering. Reciprocally, inactivation of RNA exosome activity reduced expression of mitochondrial genes while promoting senescence markers, suggesting that the RNAs accumulating as a consequence of the reduced turnover, have a function in promoting some aspects of the senescent phenotype. Consistent with this, we show that some of the RNA species detected in senescent cells are also produced during normal activation of immune cells and contain Alu sequences known to trigger an innate immune response. We propose that these RNA species participate in driving and maintaining the permanent inflammatory state characteristic of cellular senescence.
Project description:Reactive oxygen species (ROS) including hydrogen peroxide (H₂O₂) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H₂O₂ on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H₂O₂ applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H₂O₂ increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H₂O₂. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.
Project description:Sensitive detection of hydrogen peroxide (H2O2) residue in aseptic packaging at point of use is critical to food safety. We present a sensitive non-enzymatic, amperometric H2O2 sensor based on ferrocene-functionalized multi-walled carbon nanotubes (MWCNT-FeC) and facile screen-printed carbon electrodes (SPCEs). The sensor utilizes the covalently grafted ferrocene as an effective redox mediator and the MWCNT networks to provide a large active surface area for efficient electrocatalytic reactions. The electrocatalytic MWCNT-FeC modified electrodes feature a high-efficiency electron transfer and a high electrocatalytic activity towards H2O2 reduction at a low potential of -0.15 V vs. Ag/AgCl. The decreased operating potential improves the selectivity by inherently eliminating the cross-reactivity with other electroactive interferents, such as dopamine, glucose, and ascorbic acid. The sensor exhibits a wide linear detection range from 1 μM to 1 mM with a detection limit of 0.49 μM (S/N=3). The covalently functionalized electrodes offered highly reproducible and reliable detection, providing a robust property for continuous, real-time H2O2 monitoring. Furthermore, the proposed sensor was successfully employed to determine H2O2 levels in spiked packaged milk and apple juice with satisfactory recoveries (94.33-97.62%). The MWCNT-FeC modified SPCEs offered a facile, cost-effective method for highly sensitive and selective point-of-use detection of H2O2.
Project description:Hydrogen peroxide (H2O2) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H2O2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H2O2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H2O2formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H2O2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H2O2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H2O2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.
Project description:The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture-pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the "signaling of interleukin-4 and interleukin-13" pathway as the predominant mechanism in addition to regulating the "attenuation phase" and "HSP90 chaperone cycle for steroid hormone receptors" pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Project description:Hydrogen peroxide (H2O2) has been a fascinating target in various chemical, biological, clinical, and industrial fields. Several types of fluorescent protein-stabilized gold nanoclusters (protein-AuNCs) have been developed for sensitive and easy detection of H2O2. However, its low sensitivity makes is difficult to measure negligible concentrations of H2O2. Therefore, to overcome this limitation, we developed a horseradish peroxidase-encapsulated fluorescent bio-nanoparticle (HEFBNP), comprising bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and horseradish peroxidase-stabilized gold nanoclusters (HRP-AuNCs). The fabricated HEFBNP can sensitively detect H2O2 owing to its two properties. The first is that HEFBNPs have a continuous two-step fluorescence quenching mechanism, which comes from the heterogenous fluorescence quenching mechanism of HRP-AuNCs and BSA-AuNCs. Second, the proximity of two protein-AuNCs in a single HEFBNP allows a reaction intermediate (•OH) to rapidly reach the adjacent protein-AuNCs. As a result, HEFBNP can improve the overall reaction event and decrease the loss of intermediate in the solution. Due to the continuous quenching mechanism and effective reaction event, a HEFBNP-based sensing system can measure very low concentrations of H2O2 up to 0.5 nM and show good selectivity. Furthermore, we design a glass-based microfluidic device to make it easier use HEFBNP, which allowed us to detect H2O2 with the naked eye. Overall, the proposed H2O2 sensing system is expected to be an easy and highly sensitive on-site detection tool in chemistry, biology, clinics, and industry fields.
Project description:Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.