Unknown

Dataset Information

0

Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis.


ABSTRACT: Tunicates are the only animals that perform cellulose biosynthesis. The tunicate gene for cellulose synthase, Ci-CesA, was likely acquired by horizontal transfer from bacteria and was a key innovation in the evolution of tunicates. Transposon-based mutagenesis in an ascidian, Ciona intestinalis, has generated a mutant, swimming juvenile (sj). Ci-CesA is the gene responsible for the sj mutant, in which a drastic reduction in cellulose was observed in the tunic. Furthermore, during metamorphosis, which in ascidians convert the vertebrate-like larva into a sessile filter feeder, sj showed abnormalities in the order of metamorphic events. In normal larvae, the metamorphic events in the trunk region are initiated after tail resorption. In contrast, sj mutant larvae initiated the metamorphic events in the trunk without tail resorption. Thus, sj larvae show a "swimming juvenile" phenotype, the juvenile-like trunk structure with a complete tail and the ability to swim. It is likely that ascidian cellulose synthase is required for the coordination of the metamorphic events in the trunk and tail in addition to cellulose biosynthesis.

SUBMITTER: Sasakura Y 

PROVIDER: S-EPMC1257696 | biostudies-literature | 2005 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis.

Sasakura Yasunori Y   Nakashima Keisuke K   Awazu Satoko S   Matsuoka Terumi T   Nakayama Akie A   Azuma Jun-ichi J   Satoh Nori N  

Proceedings of the National Academy of Sciences of the United States of America 20051007 42


Tunicates are the only animals that perform cellulose biosynthesis. The tunicate gene for cellulose synthase, Ci-CesA, was likely acquired by horizontal transfer from bacteria and was a key innovation in the evolution of tunicates. Transposon-based mutagenesis in an ascidian, Ciona intestinalis, has generated a mutant, swimming juvenile (sj). Ci-CesA is the gene responsible for the sj mutant, in which a drastic reduction in cellulose was observed in the tunic. Furthermore, during metamorphosis,  ...[more]

Similar Datasets

| S-EPMC4031475 | biostudies-other
| S-EPMC5484526 | biostudies-literature
| S-EPMC7002689 | biostudies-literature
2010-07-20 | GSE22995 | GEO
| S-EPMC4231237 | biostudies-literature
| S-EPMC3580780 | biostudies-literature
| S-EPMC3066068 | biostudies-literature
2010-07-20 | E-GEOD-22995 | biostudies-arrayexpress
| S-EPMC2684816 | biostudies-literature
| S-EPMC1488885 | biostudies-literature