Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response?
Ontology highlight
ABSTRACT: Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.
SUBMITTER: Robalino J
PROVIDER: S-EPMC1262564 | biostudies-literature | 2005 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA