Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits.
Ontology highlight
ABSTRACT: AAA proteases are membrane-bound ATP-dependent proteases that are present in eubacteria, mitochondria and chloroplasts and that can degrade membrane proteins. Recent evidence suggests dislocation of membrane-embedded substrates for proteolysis to occur in a hydrophilic environment; however, next to nothing is known about the mechanism of this process. Here, we have analysed the role of the membrane-spanning domains of Yta10 and Yta12, which are conserved subunits of the hetero-oligomeric m-AAA protease in the mitochondria of Saccharomyces cerevisiae. We demonstrate that the m-AAA protease retains proteolytic activity after deletion of the transmembrane segments of either Yta10 or Yta12. Although the mutant m-AAA protease is still capable of processing cytochrome c peroxidase and degrading a peripheral membrane protein, proteolysis of integral membrane proteins is impaired. We therefore propose that transmembrane segments of m-AAA protease subunits have a direct role in the dislocation of membrane-embedded substrates.
SUBMITTER: Korbel D
PROVIDER: S-EPMC1299097 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA