Molecular dynamics simulations on SDF-1alpha: binding with CXCR4 receptor.
Ontology highlight
ABSTRACT: Insights into the interacting mode of CXCR4 with SDF-1alpha are crucial in understanding the structural and functional characteristics of CXCR4 receptor. In this paper a computational pipeline, integrating protein structure prediction, molecular dynamics simulations, automated molecular docking, and Brownian dynamics simulations were employed to investigate the dynamic and energetic aspects of CXCR4 associating with SDF-1alpha. The entire simulation revealed the surface distribution feature of electrostatic potentials and conformational "open-close" process of the receptor. The possible binding conformation of CXCR4 was identified, and the CXCR4-SDF-1alpha binding complex was generated. Arg188-Glu277 salt bridge plays an important role for both the extracellular domain conformational change and SDF-1alpha binding. Two binding sites were mapped at the extracellular domain (Site 1) and inside the transmembrane domain (Site 2), which are composed of conserved residues. Sites 1 and 2 contribute approximately 60% and 40% to the binding affinity with SDF-1alpha, respectively. The binding model is in agreement with most of the experimental data. Transmembrane VI has more significant motion in the harmonious conformational transition of CXCR4 during SDF-1alpha binding, which may be possibly associated with signal transduction. Based on the modeling and simulation, a binding mechanism hypothesis between CXCR4 and SDF-1alpha and its relationship to the signal transduction has been proposed.
SUBMITTER: Huang X
PROVIDER: S-EPMC1302601 | biostudies-literature | 2003 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA