Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin.
Ontology highlight
ABSTRACT: The plasma membrane calcium-ATPase (PMCA) helps to control cytosolic calcium levels by pumping out excess Ca2+. PMCA is regulated by the Ca2+ signaling protein calmodulin (CaM), which stimulates PMCA activity by binding to an autoinhibitory domain of PMCA. We used single-molecule polarization methods to investigate the mechanism of regulation of the PMCA by CaM fluorescently labeled with tetramethylrhodamine. The orientational mobility of PMCA-CaM complexes was determined from the extent of modulation of single-molecule fluorescence upon excitation with a rotating polarization. At a high Ca2+ concentration, the distribution of modulation depths reveals that CaM bound to PMCA is orientationally mobile, as expected for a dissociated autoinhibitory domain of PMCA. In contrast, at a reduced Ca2+ concentration a population of PMCA-CaM complexes appears with significantly reduced orientational mobility. This population can be attributed to PMCA-CaM complexes in which the autoinhibitory domain is not dissociated, and thus the PMCA is inactive. The presence of these complexes demonstrates the inadequacy of a two-state model of Ca2+ pump activation and suggests a regulatory role for the low-mobility state of the complex. When ATP is present, only the high-mobility state is detected, revealing an altered interaction between the autoinhibitory and nucleotide-binding domains.
SUBMITTER: Osborn KD
PROVIDER: S-EPMC1304593 | biostudies-literature | 2004 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA