Unknown

Dataset Information

0

Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel.


ABSTRACT: Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells and Cos-7 cells transiently transfected with eNOS and porin cDNAs. In vitro binding studies with glutathione S-transferase-porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity. The calcium ionophore, and bradykinin, which are known to activate eNOS, markedly increased porin-eNOS interaction, suggesting a potential role of intracellular Ca(2+) in mediating this interaction. Theses results indicate that the interaction between a voltage-dependent membrane channel and eNOS may be important for regulating eNOS activity.

SUBMITTER: Sun J 

PROVIDER: S-EPMC130594 | biostudies-literature | 2002 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel.

Sun Jianxin J   Liao James K JK  

Proceedings of the National Academy of Sciences of the United States of America 20020912 20


Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells  ...[more]

Similar Datasets

| S-EPMC3547107 | biostudies-literature
| S-EPMC3012482 | biostudies-literature
| S-EPMC3939925 | biostudies-literature
| S-EPMC5693355 | biostudies-literature
| S-EPMC3082971 | biostudies-literature
2019-07-31 | GSE118737 | GEO
| S-EPMC3162400 | biostudies-literature
| S-EPMC7531049 | biostudies-literature
| S-EPMC2874202 | biostudies-literature
| S-EPMC4628887 | biostudies-literature