A leucine-rich motif targets Pseudomonas aeruginosa ExoS within mammalian cells.
Ontology highlight
ABSTRACT: Type III cytotoxins contribute to the ability of bacterial pathogens to subvert the host innate immune system. ExoS (453 amino acids) is a bifunctional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96 to 232 comprise a Rho GTPase activating protein domain, while residues 233 to 453 comprise a 14-3-3-dependent ADP-ribosyltransferase domain. An N-terminal domain (termed the membrane localization domain [MLD]) targets ExoS to the Golgi-endoplasmic reticulum (Golgi-ER) of mammalian cells. This study identifies an amino acid motif that is responsible for the membrane binding properties of the MLD. Deletion mapping showed that the MLD included a symmetrical leucine-rich motif within residues 51 to 77 of ExoS. The terminal dileucines and internal leucines and an isoleucine within the MLD, but not charged or other hydrophobic residues, targeted a reporter protein to the Golgi-ER region of HeLa cells. Mutations of the leucines within the MLD did not affect type III secretion or translocation into HeLa cells but limited the ability of ExoS to ADP-ribosylate Ras GTPases. Mutations of charged residues within the MLD did not affect type III secretion, delivery into HeLa cells, or the ability of ExoS to ADP-ribosylate Ras GTPases. The organization of the leucines within the MLD of ExoS is different from that of previously described leucine-rich motifs but is present in several other bacterial proteins. This implies a role for intracellular targeting in the efficient targeting of mammalian cells by type III cytotoxins.
SUBMITTER: Zhang Y
PROVIDER: S-EPMC1307044 | biostudies-literature | 2005 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA