Unknown

Dataset Information

0

Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.


ABSTRACT: Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5'-untranslated regions (UTRs) of mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory effects of mRNA 5'-UTR folding free energies. We performed computations of secondary structures in 5'-UTRs and their folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free energies of 5'-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs with weakly folded 5'-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 5'-UTRs have significantly higher folding free energies than other genomic regions and randomized sequences. We also found a positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived transcripts, which supports a picture of competition between translation and degradation. Among the genes with strongly folded 5'-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our analysis, we conclude that (i) there is a widespread bias for 5'-UTRs to be weakly folded, (ii) folding free energies of 5'-UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii) transcripts with strongly folded 5'-UTRs are often rare and hard to find experimentally.

SUBMITTER: Ringner M 

PROVIDER: S-EPMC1309706 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6402760 | biostudies-literature
2012-09-09 | E-GEOD-39680 | biostudies-arrayexpress
| S-EPMC5224888 | biostudies-literature
2012-09-09 | GSE39680 | GEO
| S-EPMC4831757 | biostudies-literature
| S-EPMC5637908 | biostudies-other
| S-EPMC7484617 | biostudies-literature
| S-EPMC1752236 | biostudies-literature
| S-EPMC1599903 | biostudies-literature
| S-EPMC3587178 | biostudies-literature