Unknown

Dataset Information

0

The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.


ABSTRACT: Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a Deltagrn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue deltagrn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.

SUBMITTER: Du X 

PROVIDER: S-EPMC1345682 | biostudies-literature | 2006 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.

Du Xianming X   Rao Malireddi R K Subba MR   Chen Xue Qin XQ   Wu Wei W   Mahalingam Sundarasamy S   Balasundaram David D  

Molecular biology of the cell 20051026 1


Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted  ...[more]

Similar Datasets

| S-EPMC3176313 | biostudies-literature
| S-EPMC3668566 | biostudies-literature
| S-EPMC6411936 | biostudies-literature
| S-EPMC2174343 | biostudies-literature
| S-EPMC556499 | biostudies-other
| S-EPMC7415967 | biostudies-literature
| S-EPMC2943600 | biostudies-literature
| S-EPMC1370763 | biostudies-literature
| S-EPMC2860240 | biostudies-literature
| S-EPMC10228412 | biostudies-literature