Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis.
Ontology highlight
ABSTRACT: Replication of positive-strand RNA viruses involves translation of polyproteins which are proteolytically processed into functional peptides. These maturation steps often involve virus-encoded autoproteases specialized in generating their own N or C termini. Nonstructural protein 2 (NS2) of the pestivirus bovine viral diarrhea virus represents such an enzyme. Bovine viral diarrhea virus NS2 creates in cis its own C terminus and thereby releases an essential viral replication factor. As a unique feature, this enzyme requires for proteolytic activity stoichiometric amounts of a cellular chaperone termed Jiv (J-domain protein interacting with viral protein) or its fragment Jiv90. To obtain insight into the structural organization of the NS2 autoprotease, the basis for its restriction to cis cleavage, as well as its activation by Jiv, we dissected NS2 into functional domains. Interestingly, an N-terminal NS2 fragment covering the active center of the protease, cleaved in trans an artificial substrate composed of a C-terminal NS2 fragment and two downstream amino acids. In the authentic NS2, the 4 C-terminal amino acids interfered with binding and cleavage of substrates offered in trans. These findings strongly suggest an intramolecular product inhibition for the NS2 autoprotease. Remarkably, the chaperone fragment Jiv90 independently interacted with protease and substrate domain and turned out to be essential for the formation of a protease/substrate complex that is required for cleavage. Thus, the function of the cell-derived protease cofactor Jiv in proteolysis is regulation of protease/substrate interaction, which ultimately results in positioning of active site and substrate peptide into a cleavage-competent conformation.
SUBMITTER: Lackner T
PROVIDER: S-EPMC1360547 | biostudies-literature | 2006 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA