Project description:Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes. In total, 12 total RNA samples were used for microarray analysis: 6 samples from Madison mice and 6 samples from ICR outbred mice. All samples were biological replicates.
Project description:ObjectiveThe authors sought to determine the risk of treatment-emergent mania associated with methylphenidate, used in monotherapy or with a concomitant mood-stabilizing medication, in patients with bipolar disorder.MethodUsing linked Swedish national registries, the authors identified 2,307 adults with bipolar disorder who initiated therapy with methylphenidate between 2006 and 2014. The cohort was divided into two groups: those with and those without concomitant mood-stabilizing treatment. To adjust for individual-specific confounders, including disorder severity, genetic makeup, and early environmental factors, Cox regression analyses were used, conditioning on individual to compare the rate of mania (defined as hospitalization for mania or a new dispensation of stabilizing medication) 0-3 months and 3-6 months after medication start following nontreated periods.ResultsPatients on methylphenidate monotherapy displayed an increased rate of manic episodes within 3 months of medication initiation (hazard ratio=6.7, 95% CI=2.0-22.4), with similar results for the subsequent 3 months. By contrast, for patients taking mood stabilizers, the risk of mania was lower after starting methylphenidate (hazard ratio=0.6, 95% CI=0.4-0.9). Comparable results were observed when only hospitalizations for mania were counted.ConclusionsNo evidence was found for a positive association between methylphenidate and treatment-emergent mania among patients with bipolar disorder who were concomitantly receiving a mood-stabilizing medication. This is clinically important given that up to 20% of people with bipolar disorder suffer from comorbid ADHD. Given the markedly increased hazard ratio of mania following methylphenidate initiation in bipolar patients not taking mood stabilizers, careful assessment to rule out bipolar disorder is indicated before initiating monotherapy with psychostimulants.
Project description:Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
Project description:Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN) that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
Project description:The single nucleotide polymorphism rs13166360, causing a substitution of valine 147 to leucine in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that this missense mutation diminishes ADCY2 activity by altering its subcellular localization. Mice homozygous for the leucine variant display signs of a mania-like state accompanied by cognitive impairments. Mutant mice are hypersensitive to amphetamine and mania-like behaviors are responsive to lithium treatment. Exposure to chronic social defeat stress switches homozygous leucine variant carriers from a mania- to a depressive-like state. Single-cell RNA-seq revealed widespread expression of ADCY2 in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene providing insights into underlying disease mechanisms potentially opening novel avenues for therapeutic intervention strategies.
Project description:Disturbances in circadian rhythms have been suggested as a possible cause of bipolar disorder (BD). Included in this study were 31 mood episodes of 26 BD patients, and 18 controls. Circadian rhythms of BD were evaluated at admission, at 2-week intervals during hospitalization, and at discharge. All participants wore wrist actigraphs during the studies. Saliva and buccal cells were obtained at 8:00, 11:00, 15:00, 19:00, and 23:00 for two consecutive days. Collected saliva and buccal cells were used for analysis of the cortisol and gene circadian rhythm, respectively. Circadian rhythms had different phases during acute mood episodes of BD compared to recovered states. In 23 acute manic episodes, circadian phases were ~7hour advanced (equivalent to ~17hour delayed). Phases of 21 out of these 23 cases returned to normal by ~7hour delay along with treatment, but two out of 23 cases returned to normal by ~17hour advance. In three cases of mixed manic episodes, the phases were ~6-7hour delayed. For five cases of depressive episodes, circadian rhythms phases were ~4-5hour delayed. After treatment, circadian phases resembled those of healthy controls. Circadian misalignment due to circadian rhythm phase shifts might be a pathophysiological mechanism of BD.
Project description:There is increasing interest in individualizing treatment selection for more than 25 regulatory approved treatments for major depressive disorder (MDD). Despite an inconclusive efficacy evidence base, antidepressants (ADs) are prescribed for the depressive phase of bipolar disorder (BD) with oftentimes, an inadequate treatment response and or clinical concern for mood destabilization. This study explored the relationship between antidepressant response in MDD and antidepressant-associated treatment emergent mania (TEM) in BD. We conducted a genome-wide association study (GWAS) and polygenic score analysis of TEM and tested its association in a subset of BD-type I patients treated with SSRIs or SNRIs. Our results did not identify any genome-wide significant variants although, we found that a higher polygenic score (PGS) for antidepressant response in MDD was associated with higher odds of TEM in BD. Future studies with larger transdiagnostic depressed cohorts treated with antidepressants are encouraged to identify a neurobiological mechanism associated with a spectrum of depression improvement from response to emergent mania.
Project description:BackgroundEvidence supporting the continuous latent structure of mood phenomena has not been incorporated into psychiatric diagnostic systems, in part because the evidence has been incomplete. For example, no studies have investigated the boundary between 'sick' and 'well' periods in individuals with bipolar disorder, despite agreement that characterization of mood disorders as having a discrete episodic course is inaccurate. The present study examined the validity of mood episode symptom thresholds in out-patients with bipolar disorder using multiple methodologies: taxometrics and information-theoretic latent distribution modeling (ITLDM), to evaluate the continuity/discontinuity of mood symptoms; and structural equation mixture modeling (SEMM), to evaluate the continuity/discontinuity of associations between mood symptoms and general functioning.MethodA total of 3721 out-patients with bipolar disorder from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) were available for analysis. Data were collected at participants' baseline STEP-BD visit. Taxometric [maximum covariance/means above minus below a cut (MAXCOV/MAMBAC) with simulated comparison data], ITLDM and SEMM methods were applied twice, once to the Montgomery-Åsberg Depression Rating Scale and again to the Young Mania Rating Scale.ResultsTaxometric results unequivocally supported a continuous interpretation of the data. ITLDM results favored many valued 'discrete metrical' models, suggesting that mood symptoms have continuous, but potentially non-normally distributed, latent structures in out-patients with bipolar disorder. Finally, SEMM results demonstrated that latent associations between mood symptoms and general functioning were linear.ConclusionsResults from the present study argue against the validity of DSM mood episode thresholds and argue for a graded continuum of care of bipolar symptom management.
Project description:The use of clinical features to define subtypes of a disorder may aid in gene identification for complex diseases. In particular, clinical subtypes of mania may distinguish phenotypic subgroups of bipolar subjects that may also differ genetically. To assess this possibility, we performed a genome-wide association study using genotype data from the Bipolar Genome Study (BiGS) and subjects that were categorized as having either irritable or elated mania during their most severe episode. A bipolar case-only analysis in the GAIN bipolar sample identified several genomic regions that differed between irritable and elated subjects, the most significant of which was for 33 SNPs on chromosome 13q31 (peak p?=?2×10(-7)). This broad peak is in a relative gene desert over an unknown EST and between the SLITRK1 and SLITRK6 genes. Evidence for association to this region came predominantly from subjects in the sample that were originally collected as part of a family-based bipolar linkage study, rather than those collected as bipolar singletons. We then genotyped an additional sample of bipolar singleton cases and controls, and the analysis of irritable vs. elated mania in this new sample did not replicate our previous findings. However, this lack of replication is likely due to the presence of significant differences in terms of clinical co-morbity that were identified between these singleton bipolar cases and those that were selected from families segregating the disorder. Despite these clinical differences, analysis of the combined sample provided continued support for 13q31 and other regions from our initial analysis. Though genome-wide significance was not achieved, our results suggest that irritable mania results from a distinct set of genes, including a region on chromosome 13q31.
Project description:BackgroundAlthough executive impairment has been reported in mania, its brain functional correlates have been relatively little studied. This study examined goal management, believed to be more closely related to executive impairment in daily life than other executive tasks, using a novel functional magnetic resonance imaging (fMRI) paradigm in patients in this illness phase.MethodsTwenty-one currently manic patients with bipolar disorder and 30 matched healthy controls were scanned while performing the Computerized Multiple Elements Test (CMET). This requires participants to sequentially play four simple games, with transition between games being made either voluntarily (executive condition) or automatically (control condition).ResultsCMET performance was impaired in the manic patients compared to the healthy controls. Manic patients failed to increase activation in the lateral frontal, cingulate and inferior parietal cortex when the executive demands of the task increased, while this increase was observed in the healthy controls. Activity in these regions was associated with task performance.ConclusionsManic patients show evidence of impaired goal management, which is associated with a pattern of reduced medial and lateral frontal and parietal activity.