Project description:BackgroundSince 1998 the serious public health problem in South East Asia of counterfeit artesunate, containing no or subtherapeutic amounts of the active antimalarial ingredient, has led to deaths from untreated malaria, reduced confidence in this vital drug, large economic losses for the legitimate manufacturers, and concerns that artemisinin resistance might be engendered.Methods and findingsWith evidence of a deteriorating situation, a group of police, criminal analysts, chemists, palynologists, and health workers collaborated to determine the source of these counterfeits under the auspices of the International Criminal Police Organization (INTERPOL) and the Western Pacific World Health Organization Regional Office. A total of 391 samples of genuine and counterfeit artesunate collected in Vietnam (75), Cambodia (48), Lao PDR (115), Myanmar (Burma) (137) and the Thai/Myanmar border (16), were available for analysis. Sixteen different fake hologram types were identified. High-performance liquid chromatography and/or mass spectrometry confirmed that all specimens thought to be counterfeit (195/391, 49.9%) on the basis of packaging contained no or small quantities of artesunate (up to 12 mg per tablet as opposed to approximately 50 mg per genuine tablet). Chemical analysis demonstrated a wide diversity of wrong active ingredients, including banned pharmaceuticals, such as metamizole, and safrole, a carcinogen, and raw material for manufacture of methylenedioxymethamphetamine ('ecstasy'). Evidence from chemical, mineralogical, biological, and packaging analysis suggested that at least some of the counterfeits were manufactured in southeast People's Republic of China. This evidence prompted the Chinese Government to act quickly against the criminal traders with arrests and seizures.ConclusionsAn international multi-disciplinary group obtained evidence that some of the counterfeit artesunate was manufactured in China, and this prompted a criminal investigation. International cross-disciplinary collaborations may be appropriate in the investigation of other serious counterfeit medicine public health problems elsewhere, but strengthening of international collaborations and forensic and drug regulatory authority capacity will be required.
Project description:When severe malaria is suspected in children, the WHO recommends pretreatment with a single rectal dose of artesunate before referral to an appropriate facility. This was an individually randomized, open-label, 2-arm, crossover clinical trial in 82 Congolese children with severe falciparum malaria to characterize the pharmacokinetics of rectal artesunate. At admission, children received a single dose of rectal artesunate (10 mg/kg of body weight) followed 12 h later by intravenous artesunate (2.4 mg/kg) or the reverse order. All children also received standard doses of intravenous quinine. Artesunate and dihydroartemisinin were measured at 11 fixed intervals, following 0- and 12-h drug administrations. Clinical, laboratory, and parasitological parameters were measured. After rectal artesunate, artesunate and dihydroartemisinin showed large interindividual variability (peak concentrations of dihydroartemisinin ranged from 5.63 to 8,090 nM). The majority of patients, however, reached previously suggested in vivo IC50 and IC90 values (98.7% and 92.5%, respectively) of combined concentrations of artesunate and dihydroartemisinin between 15 and 30 min after drug administration. The median (interquartile range [IQR]) time above IC50 and IC90 was 5.68 h (2.90 to 6.08) and 2.74 h (1.52 to 3.75), respectively. The absolute rectal bioavailability (IQR) was 25.6% (11.7 to 54.5) for artesunate and 19.8% (10.3 to 35.3) for dihydroartemisinin. The initial 12-h parasite reduction ratio was comparable between rectal and intravenous artesunate: median (IQR), 84.3% (50.0 to 95.4) versus 69.2% (45.7 to 93.6), respectively (P = 0.49). Despite large interindividual variability, rectal artesunate can initiate and sustain rapid parasiticidal activity in most children with severe falciparum malaria while they are transferred to a facility where parenteral artesunate is available. (This study has been registered at ClinicalTrials.gov under identifier NCT02492178.).
Project description:BackgroundThe artemisinin-based combination treatment (ACT) of dihydroartemisinin (DHA) and piperaquine (PQP) is a promising novel anti-malarial drug effective against multi-drug resistant falciparum malaria. The aim of this study was to show non-inferiority of DHA/PQP vs. artesunate-mefloquine (AS+MQ) in Asia.Methods and findingsThis was an open-label, randomised, non-inferiority, 63-day follow-up study conducted in Thailand, Laos and India. Patients aged 3 months to 65 years with Plasmodium falciparum mono-infection or mixed infection were randomised with an allocation ratio of 2:1 to a fixed-dose DHA/PQP combination tablet (adults: 40 mg/320 mg; children: 20 mg/160 [DOSAGE ERROR CORRECTED] mg; n = 769) or loose combination of AS+MQ (AS: 50 mg, MQ: 250 mg; n = 381). The cumulative doses of study treatment over the 3 days were of about 6.75 mg/kg of DHA and 54 mg/kg of PQP and about 12 mg/kg of AS and 25 mg/kg of MQ. Doses were rounded up to the nearest half tablet. The primary endpoint was day-63 polymerase chain reaction (PCR) genotype-corrected cure rate. Results were 87.9% for DHA/PQP and 86.6% for AS+MQ in the intention-to-treat (ITT; 97.5% one-sided confidence interval, CI: >-2.87%), and 98.7% and 97.0%, respectively, in the per protocol population (97.5% CI: >-0.39%). No country effect was observed. Kaplan-Meier estimates of proportions of patients with new infections on day 63 (secondary endpoint) were significantly lower for DHA/PQP than AS+MQ: 22.7% versus 30.3% (p = 0.0042; ITT). Overall gametocyte prevalence (days 7 to 63; secondary endpoint), measured as person-gametocyte-weeks, was significantly higher for DHA/PQP than AS+MQ (10.15% versus 4.88%; p = 0.003; ITT). Fifteen serious adverse events were reported, 12 (1.6%) in DHA/PQP and three (0.8%) in AS+MQ, among which six (0.8%) were considered related to DHA/PQP and three (0.8%) to AS+MQ.ConclusionsDHA/PQP was a highly efficacious drug for P. falciparum malaria in areas where multidrug parasites are prevalent. The DHA/PQP combination can play an important role in the first-line treatment of uncomplicated falciparum malaria.Trial registrationControlled-Trials.com ISRCTN81306618.
Project description:Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
Project description:The widespread dissemination of misinformation on social media is a serious threat to global health. To a large extent, it is still unclear who actually shares health-related misinformation deliberately and accidentally. We conducted a large-scale online survey among 5,307 Facebook users in six sub-Saharan African countries, in which we collected information on sharing of fake news and truth discernment. We estimate the magnitude and determinants of deliberate and accidental sharing of misinformation related to three vaccines (HPV, polio, and COVID-19). In an OLS framework we relate the actual sharing of fake news to several socioeconomic characteristics (age, gender, employment status, education), social media consumption, personality factors and vaccine-related characteristics while controlling for country and vaccine-specific effects. We first show that actual sharing rates of fake news articles are substantially higher than those reported from developed countries and that most of the sharing occurs accidentally. Second, we reveal that the determinants of deliberate vs. accidental sharing differ. While deliberate sharing is related to being older and risk-loving, accidental sharing is associated with being older, male, and high levels of trust in institutions. Lastly, we demonstrate that the determinants of sharing differ by the adopted measure (intentions vs. actual sharing) which underscores the limitations of commonly used intention-based measures to derive insights about actual fake news sharing behaviour.
Project description:ObjectiveRecent reports indicate that first cases of genuine artemisinin resistance have already emerged along the Thai-Cambodian border. The main objective of this trial was to track the potential emergence of artemisinin resistance in Bangladesh, which in terms of drug resistance forms a gateway to the Indian subcontinent.MethodsWe conducted an open-label, randomized, controlled 42-day clinical trial in Southeastern Bangladesh to investigate the potential spread of clinical artemisinin resistance from Southeast Asia. A total of 126 uncomplicated falciparum malaria patients were randomized to one of 3 treatment arms (artesunate monotherapy with 2 or 4 mg/kg/day once daily or quinine plus doxycycline TID for 7 days). Only cases fulfilling a stringent set of criteria were considered as being artemisinin-resistant.FindingsThe 28-day and 42-day cure rates in the artesunate monotherapy (2 and 4 mg/kg) and quinine/doxycyline arms were 97.8% (95% confidence interval, CI: 87.8-99.8%), 100% (95% CI: 91.1-100%), and 100% (95% CI: 83.4-100%), respectively. One case of re-infection was seen in the artesunate high dose arm, and a single case of recrudescence was observed in the low dose group on day 26. No differences in median parasite and fever clearance times were found between the 2 artesunate arms (29.8 h and 17.9 h vs. 29.5 h and 19.1 h). Not a single case fulfilled our criteria of artemisinin resistance. Parasite clearance times were considerably shorter and ex vivo results indicate significantly higher susceptibility (50% inhibitory concentration for dihydroartemisinin was 1.10 nM; 95% CI: 0.95-1.28 nM) to artemisinins as compared to SE-Asia.ConclusionThere is currently no indication that artemisinin resistance has reached Bangladesh. However, the fact that resistance has recently been reported from nearby Myanmar indicates an urgent need for close monitoring of artemisinin resistance in the region.Trial registrationClinicalTrials.gov NCT00639873.
Project description:Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.
Project description:Despite the increasing availability of typhoid vaccine in many regions, global estimates of mortality attributable to enteric fever appear stable. While both Salmonella enterica serovar Typhi (S. Typhi) and serovar Paratyphi (S. Paratyphi) cause enteric fever, limited data exist estimating the burden of S. Paratyphi, particularly in Asia and Africa. We performed a systematic review of both English and Chinese-language databases to estimate the regional burden of paratyphoid within Africa and Asia. Distinct from previous reviews of the topic, we have presented two separate measures of burden; both incidence and proportion of enteric fever attributable to paratyphoid. Included articles reported laboratory-confirmed Salmonella serovar classification, provided clear methods on sampling strategy, defined the age range of participants, and specified the time period of the study. A total of 64 full-text articles satisfied inclusion criteria and were included in the qualitative synthesis. Paratyphoid A was commonly identified as a cause of enteric fever throughout Asia. The highest incidence estimates in Asia came from China; four studies estimated incidence rates of over 150 cases/100,000 person-years. Paratyphoid A burden estimates from Africa were extremely limited and with the exception of Nigeria, few population or hospital-based studies from Africa reported significant Paratyphoid A burden. While significant gaps exist in the existing population-level estimates of paratyphoid burden in Asia and Africa, available data suggest that paratyphoid A is a significant cause of enteric fever in Asia. The high variability in documented incidence and proportion estimates of paratyphoid suggest considerable geospatial variability in the burden of paratyphoid fever. Additional efforts to monitor enteric fever at the population level will be necessary in order to accurately quantify the public health threat posed by S. Paratyphi A, and to improve the prevention and treatment of enteric fever.
Project description:Background/methodsQualitative studies suggest that bed nets affect the thermal comfort of users. To understand and reduce this discomfort the effect of bed nets on temperature, humidity, and airflow was measured in rural homes in Asia and Africa, as well as in an experimental wind tunnel. Two investigators with architectural training selected 60 houses in The Gambia, Tanzania, Philippines, and Thailand. Data-loggers were used to measure indoor temperatures in hourly intervals over a 12 months period. In a subgroup of 20 houses airflow, temperature and humidity were measured at five-minute intervals for one night from 21.00 to 6.00 hrs inside and outside of bed nets using sensors and omni-directional thermo-anemometers. An investigator set up a bed net with a mesh size of 220 holes per inch 2 in each study household and slept under the bed net to simulate a realistic environment. The attenuation of airflow caused by bed nets of different mesh sizes was also measured in an experimental wind tunnel.ResultsThe highest indoor temperatures (49.0 C) were measured in The Gambia. During the hottest months of the year the mean temperature at night (9 pm) was between 33.1 C (The Gambia) and 26.2 C (Thailand). The bed net attenuated the airflow from a minimum of 27% (Philippines) to a maximum of 71% (The Gambia). Overall the bed nets reduced airflow compared to un-attenuated airflow from 9 to 4 cm sec-1 or 52% (p<0.001). In all sites, no statistically significant difference in temperature or humidity was detected between the inside and outside of the bed net. Wind tunnel experiments with 11 different mesh-sized bed nets showed an overall reduction in airflow of 64% (range 55 - 71%) compared to un-attenuated airflow. As expected, airflow decreased with increasing net mesh size. Nets with a mesh of 136 holes inch-2 reduced airflow by 55% (mean; range 51 - 73%). A denser net (200 holes inch-2) attenuated airflow by 59% (mean; range 56 - 74%).DiscussionDespite concerted efforts to increase the uptake of this intervention in many areas uptake remains poor. Bed nets reduce airflow, but have no influence on temperature and humidity. The discomfort associated with bed nets is likely to be most intolerable during the hottest and most humid period of the year, which frequently coincides with the peak of malaria vector densities and the force of pathogen transmission.ConclusionsThese observations suggest thermal discomfort is a factor limiting bed net use and open a range of architectural possibilities to overcome this limitation.