Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin.
Ontology highlight
ABSTRACT: The aminocoumarin resistance genes of the biosynthetic gene clusters of novobiocin, coumermycin A(1), and clorobiocin were investigated. All three clusters contained a gyrB(R) resistance gene, coding for a gyrase B subunit. Unexpectedly, the clorobiocin and the coumermycin A(1) clusters were found to contain an additional, similar gene, named parY(R). Its predicted gene product showed sequence similarity with the B subunit of type II topoisomerases. Expression of gyrB(R) and likewise of parY(R) in Streptomyces lividans TK24 resulted in resistance against novobiocin and coumermycin A(1), suggesting that both gene products are able to function as aminocoumarin-resistant B subunits of gyrase. Southern hybridization experiments showed that the genome of all three antibiotic producers and of Streptomyces coelicolor contained two additional genes which hybridized with either gyrB(R) or parY(R) and which may code for aminocoumarin-sensitive GyrB and ParY proteins. Two putative transporter genes, novA and couR5, were found in the novobiocin and the coumermycin A(1) cluster, respectively. Expression of these genes in S. lividans TK24 resulted in moderate levels of resistance against novobiocin and coumermycin A(1), suggesting that these genes may be involved in antibiotic transport.
SUBMITTER: Schmutz E
PROVIDER: S-EPMC149333 | biostudies-literature | 2003 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA