Unknown

Dataset Information

0

An opposite role for tau in circadian rhythms revealed by mathematical modeling.


ABSTRACT: Biological clocks with a period of approximately 24 h (circadian) exist in most organisms and time a variety of functions, including sleep-wake cycles, hormone release, bioluminescence, and core body temperature fluctuations. Much of our understanding of the clock mechanism comes from the identification of specific mutations that affect circadian behavior. A widely studied mutation in casein kinase I (CKI), the CKIepsilon(tau) mutant, has been shown to cause a loss of kinase function in vitro, but it has been difficult to reconcile this loss of function with the current model of circadian clock function. Here we show that mathematical modeling predicts the opposite, that the kinase mutant CKIepsilon(tau) increases kinase activity, and we verify this prediction experimentally. CKIepsilon(tau) is a highly specific gain-of-function mutation that increases the in vivo phosphorylation and degradation of the circadian regulators PER1 and PER2. These findings experimentally validate a mathematical modeling approach to a complex biological function, clarify the role of CKI in the clock, and demonstrate that a specific mutation can be both a gain and a loss of function depending on the substrate.

SUBMITTER: Gallego M 

PROVIDER: S-EPMC1502281 | biostudies-literature | 2006 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

An opposite role for tau in circadian rhythms revealed by mathematical modeling.

Gallego Monica M   Eide Erik J EJ   Woolf Margaret F MF   Virshup David M DM   Forger Daniel B DB  

Proceedings of the National Academy of Sciences of the United States of America 20060703 28


Biological clocks with a period of approximately 24 h (circadian) exist in most organisms and time a variety of functions, including sleep-wake cycles, hormone release, bioluminescence, and core body temperature fluctuations. Much of our understanding of the clock mechanism comes from the identification of specific mutations that affect circadian behavior. A widely studied mutation in casein kinase I (CKI), the CKIepsilon(tau) mutant, has been shown to cause a loss of kinase function in vitro, b  ...[more]

Similar Datasets

| S-EPMC5423656 | biostudies-literature
2023-12-05 | GSE241003 | GEO
2023-12-05 | GSE241002 | GEO
| 2132582 | ecrin-mdr-crc
| S-EPMC3734602 | biostudies-literature
2016-03-16 | E-GEOD-79208 | biostudies-arrayexpress
| PRJNA1006025 | ENA
| PRJNA1006022 | ENA
2016-03-16 | GSE79208 | GEO
| S-EPMC1828142 | biostudies-literature