Project description:The circadian clock can adapt itself to external cues, but the molecular mechanisms and regulatory networks governing circadian oscillations' transient adjustments are still largely unknown. Here we consider the specific case of circadian oscillations transiently responding to a temperature change. Using a framework motivated by Floquet theory, we model the mRNA expression level of the fat body from Drosophila melanogaster following a step change from 25C to 18C. Using the method we infer the adaptation rates of individual genes as they adapt to the new temperature. To deal with heteroskedastic noise and outliers present in the expression data we employ quantile regression and wild bootstrap for significance testing. Model selection with finite-sample corrected Akaike Information Criterion (AICc) is performed additionally for robust inference. We identify several genes with fast transition rates as potential sources of temperature-mediated responses in the circadian system of fruit flies, and the constructed network suggests that the proteasome may play important roles in governing these responses.
Project description:The circadian clock can adapt itself to external cues, but the molecular mechanisms and regulatory networks governing circadian oscillations' transient adjustments are still largely unknown. Here we consider the specific case of circadian oscillations transiently responding to a temperature change. Using a framework motivated by Floquet theory, we model the mRNA expression level of the fat body from Drosophila melanogaster following a step change from 25C to 18C. Using the method we infer the adaptation rates of individual genes as they adapt to the new temperature. To deal with heteroskedastic noise and outliers present in the expression data we employ quantile regression and wild bootstrap for significance testing. Model selection with finite-sample corrected Akaike Information Criterion (AICc) is performed additionally for robust inference. We identify several genes with fast transition rates as potential sources of temperature-mediated responses in the circadian system of fruit flies, and the constructed network suggests that the proteasome may play important roles in governing these responses.
Project description:Observational, non randomized study aimed at measuring the circadian rhythms in the urinary concentrations of physiological modified nucleosides in 30 patients with metastatic colorectal cancer and in 30 age and sex-matched healthy subjects.
Project description:Recent evidence suggest that the circadian timing system plays an important role in the control of renal function and maintaining blood pressure. Here, we analyzed circadian rhythms of urinary excretion of sodium and potassium in wild-type mice and mice lacking circadian transcriptional activator clock. Analysis of urines collected at hourly intervals over a 24-hour period revealed dramatic changes in rhythms of sodium and potassium excretion in clock(-/-) mice. In parallel, significant differences in circadian pattern of plasma aldosterone levels, but not in the 24-hour mean aldosterone levels, were observed. Microarray-based profiling of renal transcriptomes demonstrated that clock(-/-) mice exhibit dysregulation in multiple mechanisms involved in maintaining sodium and potassium balance by the kidney. The most significant changes were detected in the expression levels of several key enzymes (Cyp4a14, Cyp4a12a and Cyp4a12b) required for the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a powerful regulator of renal sodium and potassium excretion, renal vascular tone and blood pressure. The 20-HETE levels measured in kidney microsomes of wild-type mice followed a circadian-like temporal pattern. In clock(-/-) mice, the acrophase of this rhythm was shifted by 8 hours and the 24-hour mean levels of 20-HETE were significantly decreased. These results demonstrate that circadian rhythms of urine electrolyte excretion are largely dependent on the circadian clock activity and indicate that circadian oscillations in renal 20-HETE content could be an important mechanism of blood pressure regulation. We examined the temporal profiles of gene expression in mouse whole kidney. Animals were sacrificed for microdissection every 4 hours, i.e. at ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20 (ZT M-bM-^@M-^S Zeitgeber (circadian) time, indicates time of light-on as ZT0 and time of light-off as ZT12). The microarray hybridization was performed in duplicates on pools of RNA composed of equivalent amounts of RNA prepared from teo or three animals at each ZT time-point.
Project description:Recent evidence suggest that the circadian timing system plays an important role in the control of renal function and maintaining blood pressure. Here, we analyzed circadian rhythms of urinary excretion of sodium and potassium in wild-type mice and mice lacking circadian transcriptional activator clock. Analysis of urines collected at hourly intervals over a 24-hour period revealed dramatic changes in rhythms of sodium and potassium excretion in clock(-/-) mice. In parallel, significant differences in circadian pattern of plasma aldosterone levels, but not in the 24-hour mean aldosterone levels, were observed. Microarray-based profiling of renal transcriptomes demonstrated that clock(-/-) mice exhibit dysregulation in multiple mechanisms involved in maintaining sodium and potassium balance by the kidney. The most significant changes were detected in the expression levels of several key enzymes (Cyp4a14, Cyp4a12a and Cyp4a12b) required for the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a powerful regulator of renal sodium and potassium excretion, renal vascular tone and blood pressure. The 20-HETE levels measured in kidney microsomes of wild-type mice followed a circadian-like temporal pattern. In clock(-/-) mice, the acrophase of this rhythm was shifted by 8 hours and the 24-hour mean levels of 20-HETE were significantly decreased. These results demonstrate that circadian rhythms of urine electrolyte excretion are largely dependent on the circadian clock activity and indicate that circadian oscillations in renal 20-HETE content could be an important mechanism of blood pressure regulation.
Project description:Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e. distal convoluted tubule (DCT) and connecting tubule (CNT) and, the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, M-oM-^AM-!ENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function. Experiment Overall Design: We examined the temporal profiles of gene expression in mouse distal nephron segments and collecting ducts. The RNA was extracted from microdissected distal convoluted tubules and connecting tubules (DCT/CNT samples) or, cortical collecting ducts (CCD samples). Animals were sacrificed for microdissection every 4 hours, i.e. at ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20 (ZT M-bM-^@M-^S Zeitgeber (circadian) time, indicates time of light-on as ZT0 and time of light-off as ZT12). The microarray hybridization was performed in duplicates on two pools of RNA composed of equivalent amounts of RNA prepared from five animals at each ZT time-point.