Project description:Microwave-promoted novel and efficient one-step parallel synthesis of dibenzopyranones and heterocyclic analogues from bromo arylcarboxylates and o-hydroxyarylboronic acids via Suzuki-Miyaura cross coupling reaction is described. Spontaneous lactonization gave dibenzopyranones and heterocyclic analogues bearing electron-donating and -withdrawing groups on both aromatic rings in good to excellent yields.
Project description:The syntheses of various lariat ethers including several not previously reported and their efficient purification are presented. The synthesis route brings together reactions from a variety of previous works leading to a robust and generalized approach to these C-pivot lariats. The main steps are condensation of functionalized diols with pentaethylene glycol ditosylate in the presence of potassium as a templating cation. Purification of the final products was achieved without chromatography by extracting from an aqueous potassium hydroxide solution.
Project description:It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures (i.e., polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO2 and improved mechanical properties of the resultant MBC.
Project description:In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).
Project description:Biomass-derived carbon materials have broad application prospects in energy storage, but still face problems such as complex synthesis paths and the massive use of corrosive activators. In this study, we proposed a mild and efficient pathway to prepare nitrogen-doped porous carbon material (N-YAC) using one-step pyrolysis with solid K2CO3, tobacco straw, and melamine. The optimized material (N-YAC0.5) was not only enriched with nitrogen, but also exhibited a high specific surface area (2367 m2/g) and a reasonable pore size distribution (46.49% mesopores). When utilized in electrodes, N-YAC0.5 exhibited an excellent capacitance performance (338 F/g at 1 A/g) in the three-electrode system, and benefitted from a high mesopore distribution that maintained a capacitance of 85.2% (288 F/g) at high current densities (20 A/g). Furthermore, the composed symmetric capacitor achieved an energy density of 14.78 Wh/kg at a power density of 400 W/kg. In summary, our work provides a novel and eco-friendly approach for converting biomass into high-performance energy-storage materials.
Project description:An efficient one-step synthesis of diarylacetic acids was successfully performed by electrochemical direct carboxylation of diarylmethanol compounds in DMSO. Constant-current electrolysis of diarylmethanol species in DMSO using a one-compartment cell equipped with a Pt cathode and a Mg anode in the presence of carbon dioxide induced reductive C(sp3)-O bond cleavage at the benzylic position in diarylmethanol compounds and subsequent fixation of carbon dioxide to produce diarylacetic acids in good yield. This protocol provides a novel and simple approach to diarylacetic acids from diarylmethanol species and carbon dioxide without transformation of the hydroxy group into appropriate leaving groups, such as halides and esters including carbonates.
Project description:Ty1 elements are long terminal repeat (LTR) retrotransposons that reside within the genome of Saccharomyces cerevisiae. It has been known for many years that the 2'-5' phosphodiesterase Dbr1p, which debranches intron lariats, is required for efficient Ty1 transposition. A recent report suggested the intriguing possibility that Ty1 RNA forms a lariat as a transposition intermediate. We set out to further investigate the nature of the proposed Ty1 lariat branchpoint. However, using a wide range of techniques we were unable to find any evidence for the proposed lariat structure. Furthermore, we demonstrate that some of the techniques used in the initial study describing the lariat are capable of incorrectly reporting a lariat structure. Thus, the role of the Dbr1 protein in Ty1 retrotransposition remains elusive.
Project description:Most intronic RNAs are degraded within seconds or minutes after their excision from newly formed transcripts. However, stable intronic sequence RNAs (sisRNAs) have been described from oocytes of the frog Xenopus, from Drosophila embryos, and from human cell lines. In Xenopus oocytes, sisRNAs are abundant in both the nucleus and cytoplasm, they occur in the form of lariats, and they are stable for days. In this study we demonstrate that cytoplasmic sisRNAs are also found in human, mouse, chicken, and zebrafish cells. They exist as circular (lariat) molecules, mostly 100-500 nucleotides in length, and are derived from many housekeeping genes. They tend to have an unusual cytosine branchpoint (with the exception of those from the frog). Stable lariats are exported from the nucleus to the cytoplasm by the NXF1/NXT1 system, demonstrating that their presence in the cytoplasm is not due to passive diffusion. Lariats in the cytoplasm are not associated with transcripts of the genes from which they are derived. The biological significance of cytoplasmic sisRNAs remains obscure.
Project description:Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.
Project description:We report herein a facile and widely applicable microwave-assisted protocol for the synthesis of symmetrical diimides based on three structurally distinct aromatic dianhydrides: pyromellitic (PMA), biphenyl-tetracarboxylic acid (BPDA) and benzophenone-tetracarboxylic (BTDA) and five natural amino acids (Phe, Tyr, Ile, Lys, Cys). Fifteen symmetrical diimides with different structural characteristics containing a variety of functional groups can be produced with high yields and on a large scale.