Unknown

Dataset Information

0

An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect.


ABSTRACT: Cancer cells maintain a high glycolytic rate even in the presence of oxygen, a phenomenon first described over 70 years ago and known historically as the Warburg effect. Fructose 2,6-bisphosphate is a powerful allosteric regulator of glycolysis that acts to stimulate the activity of 6-phosphofructo-1-kinase (PFK-1), the most important control point in mammalian glycolysis. The steady state concentration of fructose 2,6-bisphosphate in turn depends on the activity of the enzyme 6-phosphofructo-2-kinase (PFK-2)/fructose-2, 6-bisphosphatase, which is expressed in several tissue-specific isoforms. We report herein the identification of a gene product for this enzyme that is induced by proinflammatory stimuli and which is distinguished by the presence of multiple copies of the AUUUA mRNA instability motif in its 3'-untranslated end. This inducible gene for PFK-2 is expressed constitutively in several human cancer cell lines and was found to be required for tumor cell growth in vitro and in vivo. Inhibition of inducible PFK-2 protein expression decreased the intracellular level of 5-phosphoribosyl-1-pyrophosphate, a product of the pentose phosphate pathway and an important precursor for nucleic acid biosynthesis. These studies identify a regulatory isoenzyme that may be essential for tumor growth and provide an explanation for long-standing observations concerning the apparent coupling of enhanced glycolysis and cell proliferation.

SUBMITTER: Chesney J 

PROVIDER: S-EPMC15892 | biostudies-literature | 1999 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect.

Chesney J J   Mitchell R R   Benigni F F   Bacher M M   Spiegel L L   Al-Abed Y Y   Han J H JH   Metz C C   Bucala R R  

Proceedings of the National Academy of Sciences of the United States of America 19990301 6


Cancer cells maintain a high glycolytic rate even in the presence of oxygen, a phenomenon first described over 70 years ago and known historically as the Warburg effect. Fructose 2,6-bisphosphate is a powerful allosteric regulator of glycolysis that acts to stimulate the activity of 6-phosphofructo-1-kinase (PFK-1), the most important control point in mammalian glycolysis. The steady state concentration of fructose 2,6-bisphosphate in turn depends on the activity of the enzyme 6-phosphofructo-2-  ...[more]

Similar Datasets

| S-EPMC4518871 | biostudies-literature
| S-EPMC9665040 | biostudies-literature
| S-EPMC1133864 | biostudies-literature
| S-EPMC8372836 | biostudies-literature
| S-EPMC3430382 | biostudies-literature
2015-02-27 | E-GEOD-45297 | biostudies-arrayexpress
2015-02-27 | GSE45297 | GEO
| S-EPMC139819 | biostudies-literature
| S-EPMC164766 | biostudies-literature
| S-EPMC2773521 | biostudies-literature