Ontology highlight
ABSTRACT: Background
Three-dimensional (3D) multivariate Fourier Transform Infrared (FTIR) image maps of tissue sections are presented. A villoglandular adenocarcinoma from a cervical biopsy with a number of interesting anatomical features was used as a model system to demonstrate the efficacy of the technique.Methods
Four FTIR images recorded using a focal plane array detector of adjacent tissue sections were stitched together using a MATLAB routine and placed in a single data matrix for multivariate analysis using Cytospec. Unsupervised Hierarchical Cluster Analysis (UHCA) was performed simultaneously on all 4 sections and 4 clusters plotted. The four UHCA maps were then stacked together and interpolated with a box function using SCIRun software.Results
The resultant 3D-images can be rotated in three-dimensions, sliced and made semi-transparent to view the internal structure of the tissue block. A number of anatomical and histopathological features including connective tissue, red blood cells, inflammatory exudate and glandular cells could be identified in the cluster maps and correlated with Hematoxylin & Eosin stained sections. The mean extracted spectra from individual clusters provide macromolecular information on tissue components.Conclusion
3D-multivariate imaging provides a new avenue to study the shape and penetration of important anatomical and histopathological features based on the underlying macromolecular chemistry and therefore has clear potential in biology and medicine.
SUBMITTER: Wood BR
PROVIDER: S-EPMC1592472 | biostudies-literature | 2006 Oct
REPOSITORIES: biostudies-literature
Wood Bayden R BR Bambery Keith R KR Evans Corey J CJ Quinn Michael A MA McNaughton Don D
BMC medical imaging 20061003
<h4>Background</h4>Three-dimensional (3D) multivariate Fourier Transform Infrared (FTIR) image maps of tissue sections are presented. A villoglandular adenocarcinoma from a cervical biopsy with a number of interesting anatomical features was used as a model system to demonstrate the efficacy of the technique.<h4>Methods</h4>Four FTIR images recorded using a focal plane array detector of adjacent tissue sections were stitched together using a MATLAB routine and placed in a single data matrix for ...[more]