Difference in conformational diversity between nucleic acids with a six-membered 'sugar' unit and natural 'furanose' nucleic acids.
Ontology highlight
ABSTRACT: Natural nucleic acids duplexes formed by Watson-Crick base pairing fold into right-handed helices that are classified in two families of secondary structures, i.e. the A- and B-form. For a long time, these A and B allomorphic nucleic acids have been considered as the 'non plus ultra' of double-stranded nucleic acids geometries with the only exception of Z-DNA, a left-handed helix that can be adopted by some DNA sequences. The five-membered furanose ring in the sugar-phosphate backbone of DNA and RNA is the underlying cause of this restriction in conformational diversity. A collection of new Watson-Crick duplexes have joined the 'original' nucleic acid double helixes at the moment the furanose sugar was replaced by different types of six-membered ring systems. The increase in this structural and conformational diversity originates from the rigid chair conformation of a saturated six-membered ring that determines the orientation of the ring substituents with respect to each other. The original A- and B-form oligonucleotide duplexes have expanded into a whole family of new structures with the potential for selective cross-communication in a parallel or antiparallel orientation, opening up a new world for information storage and for molecular recognition-directed self-organization.
SUBMITTER: Lescrinier E
PROVIDER: S-EPMC162241 | biostudies-literature | 2003 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA