Project description:Single erythropoietin (EPO) glycoforms with defined mature oligosaccharide structures and amino acid sequences are essential to elucidate the molecular mechanisms by which carbohydrates exert various physiological and metabolic functions and to explore the possible links between carbohydrates and the prevention or management of diseases. To demonstrate that it is possible to generate EPO even without recourse to cysteine-based native chemical ligation, a concise synthesis of the partially protected EPO fragment (78-166) bearing fully mature N- and O-glycans is described.
Project description:HIV-1 envelope glycoproteins gp120 and gp41 are presented on the virus surface as a trimer of heterodimer and are the targets of broadly neutralizing antibodies (bNAbs). We describe here the synthesis and preliminary immunological evaluation of a three-component trivalent HIV-1 V3 glycopeptide immunogen aiming to raise glycopeptide epitope-specific antibodies. Click chemistry confers efficient synthesis of the lipopeptide-glycopeptide conjugate that carries three copies of HIV-1 JR-FL gp120 V3 glycopeptide with a high-mannose glycan at the N332 glycosylation site. We found that the multivalent presentation substantially enhanced the immunogenicity of the V3 glycopeptide. The antisera induced by the three-component multivalent glycopeptide immunogen exhibited stronger binding to heterologous HIV-1 gp120s and the trimeric gp140s than that from the monovalent glycopeptide immunogen. The antisera generated from this preliminary rabbit immunization did not show virus neutralization activity, probably due to the lack of somatic maturation. The ability to elicit substantial glycopeptide epitope-specific antibodies by the three-component trivalent glycopeptide immunogen suggests that it could serve as a valuable vaccine component in combination with other vaccine candidates for further immunization studies.
Project description:Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2-mannotriose [β-(Man)(3)] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)(3)-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)(3)-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)(3)-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)(3)-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)(3)-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated candidiasis.
Project description:We have developed a novel antigen delivery system based on polysaccharide-coated gold nanoparticles (AuNPs) targeted to antigen presenting cells (APCs) expressing Dectin-1. AuNPs were synthesized de-novo using yeast-derived β-1,3-glucans (B13G) as the reductant and passivating agent in a microwave-catalyzed procedure yielding highly uniform and serum-stable particles. These were further functionalized with both a peptide and a specific glycosylated form from the tandem repeat sequence of mucin 4 (MUC4), a glycoprotein overexpressed in pancreatic tumors. The glycosylated sequence contained the Thomsen-Friedenreich disaccharide, a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), which has been a traditional target for antitumor vaccine design. These motifs were prepared with a cathepsin B protease cleavage site (Gly-Phe-Leu-Gly), loaded on the B13G-coated particles and these constructs were examined for Dectin-1 binding, APC processing and presentation in a model in vitro system and for immune responses in mice. We showed that these particles elicit strong in vivo immune responses through the production of both high-titer antibodies and priming of antigen-recognizing T-cells. Further examination showed that a favorable antitumor balance of expressed cytokines was generated, with limited expression of immunosuppressive Il-10. This system is modular in that any range of antigens can be conjugated to our particles and efficiently delivered to APCs expressing Dectin-1.
Project description:Human immunodeficiency virus (HIV) poses a major health problem around the globe, resulting in hundred-thousands of deaths from AIDS and over a million new infections annually. Although the standard treatment of HIV infection, antiretroviral therapy, has proven effective in preventing HIV transmission, it is unsuitable for worldwide use due to its substantial costs and frequent adverse effects. Besides promoting HIV/AIDS awareness through education, there is hardly an alternative for inhibiting the spread of the disease. One promising approach is the development of an HIV vaccine. Unfortunately, the high variability of envelope proteins from HIV subtypes, their frequency of mutation and the lack of fully understanding the mechanisms of protection against the virus constitute an obstacle for vaccine development. Efforts for developing successful anti-HIV vaccines have been underway for decades now, with little success. Lately, significant progress has been made in adopting the novel mRNA vaccine approach as an anti-HIV strategy. mRNA vaccines received a great thrust during the COVID-19 pandemic. Now, several mRNA-based HIV vaccines are undergoing clinical trials to evaluate their safety and efficacy. This review offers an overview of the pathogenesis and treatment of HIV / AIDS, previous efforts of HIV vaccine development and introduces mRNA vaccines as a promising and potential game changing platform for HIV vaccination.
Project description:The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qβ conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qβ), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qβ-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qβ conjugates synthesized represent a promising candidate of HIV-1 vaccine.
Project description:RationaleWe report the N-glycosylation pattern of a Sf9 insect cell derived recombinant spike proteins being developed as candidate vaccine antigens for SARS-CoV-2 (COVID-19) (Sanofi). The method has been optimised to produce peptides with single, isolated glycosylation sites using multiple protease digests. The development and use of glycopeptide libraries from previous developmental phases allowed for faster analysis than processing data sets from individual batches from first principles.MethodPurified spike proteins were reduced, alkylated, and digested with proteolytic enzymes. Three different protease digests were utilised to generate peptides with isolated glycosylation sites. The glycopeptides were then analysed using a Waters Q-TOF while using a data dependent acquisition (DDA) mass spectrometry experiment. Glycopeptide mapping data processing and glycan classification was performed using Genedata Expressionist via a specialised workflow that used libraries of previously detected glycopeptides to greatly reduce processing time.ResultsTwo different spike proteins from 6 manufacturers were analysed. There was a strong similarity at each site across batches and manufacturers. The majority of the glycans present were of the truncated class, although at sites N61, N234, and N717/714 high mannose structures were dominant and at N1173/1170 aglycosylation was dominant for both variant proteins. A comparison was performed on a commercially available spike protein and our results were found to be similar to earlier reports.ConclusionOur data clearly shows that the overall glycosylation pattern of both spike protein variants was highly similar from batch-to-batch, and between materials produced at different manufacturing facilities. The use of our glycopeptide libraries greatly expedited the generation of site-specific glycan occupancy data for a large glycoprotein. We compared our method with previously obtained data from a commercially available insect cell derived spike protein and the results were comparable to published findings.
Project description:Recently, we reported a directed evolution method which enabled us to discover sequences of glycopeptides that bind with picomolar affinity to HIV antibody 2G12 and are of interest as HIV vaccine candidates. In this manuscript, we describe the syntheses of several of these large (~11-12 kDa) glycopeptides by a combination of fast flow peptide synthesis and click chemistry. We also discuss the optimization of their attachment to carrier protein CRM197, affording antigenic and immunogenic conjugates ready for animal vaccination.
Project description:The Ala(1)-Gly(28) glycopeptide fragment (28) of EPO was prepared by chemical synthesis as a single glycoform. Key steps in the synthesis include attachment of a complex dodecasaccharide (7) to a seven amino acid peptide via Lansbury aspartylation, native chemical ligation to join peptide 19 with the glycopeptide domain 18, and a selective desulfurization at the ligation site to reveal the natural Ala(19). This glycopeptide fragment (28) contains both the requisite N-linked dodecasaccharide and a C-terminal (alpha)thioester handle, the latter feature permitting direct coupling with a glycopeptide fragment bearing N-terminal Cys(29) without further functionalization.
Project description:O-GlcNAcase (OGA) is the only enzyme responsible for removing N-acetyl glucosamine (GlcNAc) attached to serine and threonine residues on proteins. This enzyme plays a key role in O-GlcNAc metabolism. However, the structural features of the sugar moiety recognized by human OGA (hOGA) remain unclear. In this study, a set of glycopeptides with modifications on the GlcNAc residue, were prepared in a recombinant full-length human OGT-catalyzed reaction, using chemoenzymatically synthesized UDP-GlcNAc derivatives. The resulting glycopeptides were used to evaluate the substrate specificity of hOGA toward the sugar moiety. This study will provide insights into the exploration of probes for O-GlcNAc modification, as well as a better understanding of the roles of O-GlcNAc in cellular physiology.