Unknown

Dataset Information

0

An alternative interpretation of nanobacteria-induced biomineralization.


ABSTRACT: The reported isolation of nanobacteria from human kidney stones raises the intriguing possibility that these microorganisms are etiological agents of pathological extraskeletal calcification [Kajander, E. O. & Ciftçioglu, N. (1998) Proc. Natl. Acad. Sci. USA 95, 8274-8279]. Nanobacteria were previously isolated from FBS after prolonged incubation in DMEM. These bacteria initiated biomineralization of the culture medium and were identified in calcified particles and biofilms by nucleic acid stains, 16S rDNA sequencing, electron microscopy, and the demonstration of a transferable biomineralization activity. We have now identified putative nanobacteria, not only from FBS, but also from human saliva and dental plaque after the incubation of 0.45-microm membrane-filtered samples in DMEM. Although biomineralization in our "cultures" was transferable to fresh DMEM, molecular examination of decalcified biofilms failed to detect nucleic acid or protein that would be expected from growth of a living entity. In addition, biomineralization was not inhibited by sodium azide. Furthermore, the 16S rDNA sequences previously ascribed to Nanobacterium sanguineum and Nanobacterium sp. were found to be indistinguishable from those of an environmental microorganism, Phyllobacterium mysinacearum, that has been previously detected as a contaminant in PCR. Thus, these data do not provide plausible support for the existence of a previously undiscovered bacterial genus. Instead, we provide evidence that biomineralization previously attributed to nanobacteria may be initiated by nonliving macromolecules and transferred on "subculture" by self-propagating microcrystalline apatite.

SUBMITTER: Cisar JO 

PROVIDER: S-EPMC17231 | biostudies-literature | 2000 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

An alternative interpretation of nanobacteria-induced biomineralization.

Cisar J O JO   Xu D Q DQ   Thompson J J   Swaim W W   Hu L L   Kopecko D J DJ  

Proceedings of the National Academy of Sciences of the United States of America 20001001 21


The reported isolation of nanobacteria from human kidney stones raises the intriguing possibility that these microorganisms are etiological agents of pathological extraskeletal calcification [Kajander, E. O. & Ciftçioglu, N. (1998) Proc. Natl. Acad. Sci. USA 95, 8274-8279]. Nanobacteria were previously isolated from FBS after prolonged incubation in DMEM. These bacteria initiated biomineralization of the culture medium and were identified in calcified particles and biofilms by nucleic acid stain  ...[more]

Similar Datasets

| S-EPMC20966 | biostudies-literature
| S-EPMC4236216 | biostudies-literature
| S-EPMC3883551 | biostudies-literature
| S-EPMC1876495 | biostudies-literature
| S-EPMC2242841 | biostudies-literature
| PRJEB15614 | ENA
| S-EPMC10772126 | biostudies-literature
2021-12-07 | GSE179404 | GEO
| S-EPMC7335342 | biostudies-literature
| S-EPMC4507537 | biostudies-literature