Unknown

Dataset Information

0

Mitochondrial uncoupling protein is required for efficient photosynthesis.


ABSTRACT: Uncoupling proteins (UCPs) occur in the inner mitochondrial membrane and dissipate the proton gradient across this membrane that is normally used for ATP synthesis. Although the catalytic function and regulation of plant UCPs have been described, the physiological purpose of UCP in plants has not been established. Here, biochemical and physiological analyses of an insertional knockout of one of the Arabidopsis UCP genes (AtUCP1) are presented that resolve this issue. Absence of UCP1 results in localized oxidative stress but does not impair the ability of the plant to withstand a wide range of abiotic stresses. However, absence of UCP1 results in a photosynthetic phenotype. Specifically there is a restriction in photorespiration with a decrease in the rate of oxidation of photorespiratory glycine in the mitochondrion. This change leads to an associated reduced photosynthetic carbon assimilation rate. Collectively, these results suggest that the main physiological role of UCP1 in Arabidopsis leaves is related to maintaining the redox poise of the mitochondrial electron transport chain to facilitate photosynthetic metabolism.

SUBMITTER: Sweetlove LJ 

PROVIDER: S-EPMC1748269 | biostudies-literature | 2006 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondrial uncoupling protein is required for efficient photosynthesis.

Sweetlove Lee J LJ   Lytovchenko Anna A   Morgan Megan M   Nunes-Nesi Adriano A   Taylor Nicolas L NL   Baxter Charles J CJ   Eickmeier Ira I   Fernie Alisdair R AR  

Proceedings of the National Academy of Sciences of the United States of America 20061205 51


Uncoupling proteins (UCPs) occur in the inner mitochondrial membrane and dissipate the proton gradient across this membrane that is normally used for ATP synthesis. Although the catalytic function and regulation of plant UCPs have been described, the physiological purpose of UCP in plants has not been established. Here, biochemical and physiological analyses of an insertional knockout of one of the Arabidopsis UCP genes (AtUCP1) are presented that resolve this issue. Absence of UCP1 results in l  ...[more]

Similar Datasets

| S-EPMC3390830 | biostudies-other
| S-EPMC7866055 | biostudies-literature
| S-EPMC151194 | biostudies-literature
| S-EPMC3150631 | biostudies-literature
| S-EPMC7115858 | biostudies-literature
| S-EPMC3210138 | biostudies-literature
| S-EPMC3441120 | biostudies-literature
| S-EPMC3869454 | biostudies-literature
| S-EPMC1221904 | biostudies-other