Real-time PCR and linkage studies to identify carriers presenting HPRT deleted gene.
Ontology highlight
ABSTRACT: Lesch-Nyhan syndrome (LNS) is an X-linked genetic disorder resulting in hyperuricemia, choreoathetosis, mental retardation, and self-injurious behavior. It is caused by loss of activity of the ubiquitous enzyme hypoxanthine-guanine-phosphoribosyltransferase (HPRT). The biochemical analysis of residual HPRT activity in patients' red blood cells is the first step in LNS diagnosis, and it precedes molecular study to discover the specific mutation. Unfortunately, biochemical diagnosis of healthy carriers is difficult because HPRT enzymatic activity in blood cells is similar in LNS carriers and in healthy people; genetic tests can help reveal mutations at the genomic or cDNA level, whereas gross deletions involving the first or last exons of HPRT gene are not detectable. Until now, a test based on 6-thioguanine-resistant phenotype of HPRT mutant cells from LNS patients is the only method accepted for the diagnosis of any kind of mutation in carriers. In this work, we introduce a new approach to identify carriers of large deletions in HPRT gene using real-time PCR. Results were validated in a blinded manner with a linkage study and with results obtained in Italian families previously analyzed with selective medium test. Real-time PCR analysis clearly confirmed the results obtained by selective medium; linkage data strengthened real time results, allowing us to follow the allele with the mutated HPRT through the family pedigree. We hope that the real-time PCR approach will provide a useful and reliable method to diagnose LNS carriers of large deletions in HPRT gene.
SUBMITTER: Lapucci C
PROVIDER: S-EPMC1770009 | biostudies-literature | 2006 Sep-Oct
REPOSITORIES: biostudies-literature
ACCESS DATA