Ontology highlight
ABSTRACT: Background
Antisense transcription, yielding both coding and non-coding RNA, is a widespread phenomenon in mammals. The mechanism by which natural antisense transcripts (NAT) may regulate gene expression are largely unknown. The aim of the present study was to explore the mechanism of reciprocal sense-antisense (S-AS) regulation by studying the effects of a coding and non-coding NAT on corresponding gene expression, and to investigate the possible involvement of endogenous RNA interference (RNAi) in S-AS interactions.Results
We have examined the mechanism of S-AS RNA base pairing, using thymidylate synthase and hypoxia inducible factor-1alpha as primary examples of endogenous genes with coding and non-coding NAT partners, respectively. Here we provide direct evidence against S-AS RNA duplex formation in the cytoplasm of human cells and subsequent activation of RNAi.Conclusion
Collectively, our data demonstrate that NAT regulation of gene expression occurs through a pathway independent of Dicer associated RNAi. Moreover, we introduce an experimental strategy with utility for the functional examination of other S-AS pair interactions.
SUBMITTER: Faghihi MA
PROVIDER: S-EPMC1779516 | biostudies-literature | 2006
REPOSITORIES: biostudies-literature
Faghihi Mohammad Ali MA Wahlestedt Claes C
Genome biology 20060509 5
<h4>Background</h4>Antisense transcription, yielding both coding and non-coding RNA, is a widespread phenomenon in mammals. The mechanism by which natural antisense transcripts (NAT) may regulate gene expression are largely unknown. The aim of the present study was to explore the mechanism of reciprocal sense-antisense (S-AS) regulation by studying the effects of a coding and non-coding NAT on corresponding gene expression, and to investigate the possible involvement of endogenous RNA interferen ...[more]