Unknown

Dataset Information

0

Sensory integration across space and in time for decision making in the somatosensory system of rodents.


ABSTRACT: Environment is represented in the brain by a neural code that is a result of the spatiotemporal pattern of incoming sensory information. Sensory neurons encode inputs across space and in time such that activity of a given cell inhibits the ability of near-simultaneously arriving sensory stimuli to excite the cell. At the behavioral level, consequences of such suppression are unknown. We investigated the contribution of spatially distributed, near-simultaneous sensory inputs to decision making in a whisker-dependent learning task. Mice learned the task with a single whisker or multiple whiskers alike. Both groups of mice had similar learning curves and final success rates. However, multiple-whisker animals had faster response times than single-whisker mice, requiring only about half the time to perform the task successfully. The results show that spatially distributed sensory inputs in a highly redundant sensory environment improve speed but not accuracy of the decisions made during simple sensory detection. Suppression of the near-simultaneous sensory inputs could, therefore, act to reduce the sensory redundancy.

SUBMITTER: Celikel T 

PROVIDER: S-EPMC1783091 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5947940 | biostudies-literature
| S-EPMC6279571 | biostudies-literature
| S-EPMC7511014 | biostudies-literature
| S-EPMC8319806 | biostudies-literature
| S-EPMC2709435 | biostudies-literature
| S-EPMC7758730 | biostudies-literature
| S-EPMC4678878 | biostudies-other
| S-EPMC6108310 | biostudies-literature
| S-EPMC3127887 | biostudies-other
| S-EPMC7217695 | biostudies-literature