ABSTRACT: Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacterium tuberculosis, degrades an exceptionally broad range of organic compounds. Transcriptomic analysis of cholesterol-grown RHA1 revealed a catabolic pathway predicted to proceed via 4-androstene-3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and mce4 genes in RHA1 substantiated their roles in cholesterol catabolism. Moreover, the hsaC(-) mutant accumulated 3,4-DHSA, indicating that HsaC(RHA1), formerly annotated as a biphenyl-degrading dioxygenase, catalyzes the oxygenolytic cleavage of steroid ring A. Bioinformatic analyses revealed that 51 rhodococcal genes specifically expressed during growth on cholesterol, including all predicted to specify the catabolism of rings A and B, are conserved within an 82-gene cluster in M. tuberculosis H37Rv and Mycobacterium bovis bacillus Calmette-Guérin. M. bovis bacillus Calmette-Guérin grew on cholesterol, and hsaC and kshA were up-regulated under these conditions. Heterologously produced HsaC(H37Rv) and HsaD(H37Rv) transformed 3,4-DHSA and its ring-cleaved product, respectively, with apparent specificities approximately 40-fold higher than for the corresponding biphenyl metabolites. Overall, we annotated 28 RHA1 genes and proposed physiological roles for a similar number of mycobacterial genes. During survival of M. tuberculosis in the macrophage, these genes are specifically expressed, and many appear to be essential. We have delineated a complete suite of genes necessary for microbial steroid degradation, and pathogenic mycobacteria have been shown to catabolize cholesterol. The results suggest that cholesterol metabolism is central to M. tuberculosis's unusual ability to survive in macrophages and provide insights into potential targets for novel therapeutics.