Project description:The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called "bacteriocins." Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp, respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system's signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(-)]. Contrary to the classical paradigm, it was previously shown that BlpAB(-) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com-blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(-) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(-) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains.
Project description:Twenty-two bacteriocin-producing Enterococcus isolates obtained from food and animal sources, and demonstrating activity against Listeria monocytogenes, were screened for bacteriocin-related genes using a bacteriocin PCR array based on known enterococcal bacteriocin gene sequences in the NCBI GenBank database. The 22 bacteriocin-positive (Bac+) enterococci included En. durans (1), En. faecalis (4), En. faecium (12), En. hirae (3), and En. thailandicus (2). Enterocin A (entA), enterocins mr10A and mr10B (mr10AB), and bacteriocin T8 (bacA) were the most commonly found structural genes in order of decreasing prevalence. Forty-five bacteriocin genes were identified within the 22 Bac+ isolates, each containing at least one of the screened structural genes. Of the 22 Bac+ isolates, 15 possessed two bacteriocin genes, seven isolates contained three different bacteriocins, and three isolates contained as many as four different bacteriocin genes. These results may explain the high degree of bactericidal activity observed with various Bac+ Enterococcus spp. Antimicrobial activity against wild-type L. monocytogenes and a bacteriocin-resistant variant demonstrated bacteriocins having different modes-of-action. Mixtures of bacteriocins, especially those with different modes-of-action and having activity against foodborne pathogens, such as L. monocytogenes, may play a promising role in the preservation of food.
Project description:The Enterococcus faecalis class IIa bacteriocin MC4-1 encoded by the sex pheromone-responding, multiple-antibiotic resistance plasmid pAMS1 exhibits "siblicidal" (sibling-killing) activity under certain conditions. Stabs of plasmid-containing cells on solid medium containing lawns of bacteria of the same (plasmid-containing) strain give rise to zones of inhibition. If the plasmid-containing host also produces gelatinase, bacteriocin cannot be detected.
Project description:Here, we report the draft genome sequence of the bacteriocin-producing Enterococcus faecium strain HY07, isolated from traditional Chinese fermented sausages. The genome comprises 2,585,631 bp with 2,624 coding sequences, as assigned by NCBI, which may provide fundamental molecular information on elucidating the adaption mechanism of Enterococcus faecium to the meat environment.
Project description:Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified.
Project description:As a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from - 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.
Project description:Glycocin F (GccF) is a bacteriocin produced by Lactobacillus plantarum which causes susceptible cells to enter bacteriostasis within minutes of exposure. GccF is diglycosylated with two N-acetylglucosamine (GlcNAc) moieties and is active against strains of Lb. plantarum, as well as potential pathogens such as Enterococcus faecalis and E. faecium. Its mechanism of action, however, is unknown. To better understand how GccF inhibits growth, we carried out RNA sequencing (RNA-seq) on E. faecalis strain JH2-2 exposed to different concentrations of GccF for different lengths of time. Here we demonstrate that free GlcNAc both protects E. faecalis from the effects of GccF, as well as pre-sensitises it to GccF. Transcriptional analysis showed that exposure to free GlcNAc resulted in up-regulation of a GlcNAc-specific phosphotransferase system (PTS) transporter, which is a putative GccF receptor. Time course analysis showed over 100 genes were up- or down-regulated within 10 minutes of exposure, a number that increased to over 300 genes after 40 minutes. A large number of these genes were found to be regulated by the alternative sigma factor 54, which was shown to not be required for susceptibility to GccF. Interestingly, genes encoding the V-type ATPases and sodium:proton antiporters were found to be up-regulated at all times and all concentrations of GccF tested. This suggests an indirect response to GccF, possibly due to low-level permeabilization of the cell membrane.
Project description:A total of 636 vancomycin-resistant Enterococcus faecium (VRE) isolates obtained between 1994 and 1999 from the Medical School Hospital of the University of Michigan were tested for bacteriocin production. Of the 277 (44%) bacteriocinogenic strains, 21 were active against E. faecalis, E. faecium, E. hirae, E. durans, and Listeria monocytogenes. Of those 21 strains, a representative bacteriocin of strain VRE82, designated bacteriocin 43, was found to be encoded on mobilizable plasmid pDT1 (6.2 kbp). Nine open reading frames (ORFs), ORF1 to ORF9, were presented on pDT1 and were oriented in the same direction. The bacteriocin 43 locus (bac43) consists of the bacteriocin gene bacA (ORF1) and the immunity gene bacB (ORF2). The deduced bacA product is 74 amino acids in length with a putative signal peptide of 30 amino acids at the N terminus. The bacB gene encodes a deduced 95-amino-acid protein without a signal sequence. The predicted mature BacA protein (44 amino acids) showed sequence homology with the membrane-active class IIa bacteriocins of lactic acid bacteria and showed 86% homology with bacteriocin 31 from E. faecalis YI717 and 98% homology with bacteriocin RC714. Southern analysis with a bac43 probe of each plasmid DNA from the 21 strains showed hybridization to a specific fragment corresponding to the 6.2-kbp EcoRI fragment, suggesting that the strains harbored the pDT1-like plasmid (6.2 kb) which encoded the bacteriocin 43-type bacteriocin. The bac43 determinant was not identified among non-VRE clinical isolates.
Project description:BackgroundBacteriocins are defined as thermolabile peptides produced by bacteria with biological activity against taxonomically related species. These antimicrobial peptides have a wide application including disease treatment, food conservation, and probiotics. However, even with a large industrial and biotechnological application potential, these peptides are still poorly studied and explored. BADASS is software with a user-friendly graphical interface applied to the search and analysis of bacteriocin diversity in whole-metagenome shotgun sequencing data.ResultsThe search for bacteriocin sequences is performed with tools such as BLAST or DIAMOND using the BAGEL4 database as a reference. The putative bacteriocin sequences identified are used to determine the abundance and richness of the three classes of bacteriocins. Abundance is calculated by comparing the reads identified as bacteriocins to the reads identified as 16S rRNA gene using SILVA database as a reference. BADASS has a complete pipeline that starts with the quality assessment of the raw data. At the end of the analysis, BADASS generates several plots of richness and abundance automatically as well as tabular files containing information about the main bacteriocins detected. The user is able to change the main parameters of the analysis in the graphical interface. To demonstrate how the software works, we used four datasets from WMS studies using default parameters. Lantibiotics were the most abundant bacteriocins in the four datasets. This class of bacteriocin is commonly produced by Streptomyces sp.ConclusionsWith a user-friendly graphical interface and a complete pipeline, BADASS proved to be a powerful tool for prospecting bacteriocin sequences in Whole-Metagenome Shotgun Sequencing (WMS) data. This tool is publicly available at https://sourceforge.net/projects/badass/ .