The biochemical characterization of ferret carotene-9',10'-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo.
Ontology highlight
ABSTRACT: Previous studies have shown that beta-carotene 15,15'-monooxygenase catalyzes the cleavage of beta-carotene at the central carbon 15,15'-double bond but cleaves lycopene with much lower activity. However, expressing the mouse carotene 9',10'-monooxygenase (CMO2) in beta-carotene/lycopene-synthesizing and -accumulating Escherichia coli strains leads to both a color shift and formation of apo-10'-carotenoids, suggesting the oxidative cleavage of both carotenoids at their 9',10'-double bond. Here we provide information on the biochemical characterization of CMO2 of the ferret, a model for human carotenoid metabolism, in terms of the kinetic analysis of beta-carotene/lycopene cleavage into beta-apo-10'-carotenal/apo-10'-lycopenal in vitro and the formation of apo-10'-lycopenoids in ferrets in vivo. We demonstrate that the recombinant ferret CMO2 catalyzes the excentric cleavage of both all-trans-beta-carotene and the 5-cis- and 13-cis-isomers of lycopene at the 9',10'-double bond but not all-trans-lycopene. The cleavage activity of ferret CMO2 was higher toward lycopene cis-isomers as compared with beta-carotene as substrate. Iron was an essential co-factor for the reaction. Furthermore, all-trans-lycopene supplementation in ferrets resulted in significant accumulation of cis-isomers of lycopene and the formation of apo-10'-lycopenol, as well as up-regulation of the CMO2 expression in lung tissues. In addition, in vitro incubation of apo-10'-lycopenal with the post-nuclear fraction of hepatic homogenates of ferrets resulted in the production of both apo-10'-lycopenoic acid and apo-10'-lycopenol, respectively, depending upon the presence of NAD+ or NADH as cofactors. Our finding of bioconversion of cis-isomers of lycopene into apo-10'-lycopenoids by CMO2 is significant because cis-isomers of lycopene are a predominant form of lycopene in mammalian tissues and apo-lycopenoids may have specific biological activities related to human health.
SUBMITTER: Hu KQ
PROVIDER: S-EPMC1819471 | biostudies-literature | 2006 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA