TccP2 of O157:H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization.
Ontology highlight
ABSTRACT: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.
SUBMITTER: Ogura Y
PROVIDER: S-EPMC1828498 | biostudies-literature | 2007 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA