Unknown

Dataset Information

0

A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.


ABSTRACT: Pseudomonas sp. strain MT1 has recently been reported to degrade 4- and 5-chlorosalicylate by a pathway assumed to consist of a patchwork of reactions comprising enzymes of the 3-oxoadipate pathway. Genes encoding the initial steps in the degradation of salicylate and substituted derivatives were now localized and sequenced. One of the gene clusters characterized (sal) showed a novel gene arrangement, with salA, encoding a salicylate 1-hydroxylase, being clustered with salCD genes, encoding muconate cycloisomerase and catechol 1,2-dioxygenase, respectively, and was expressed during growth on salicylate and chlorosalicylate. A second gene cluster (cat), exhibiting the typical catRBCA arrangement of genes of the catechol branch of the 3-oxoadipate pathway in Pseudomonas strains, was expressed during growth on salicylate. Despite their high sequence similarities with isoenzymes encoded by the cat gene cluster, the catechol 1,2-dioxygenase and muconate cycloisomerase encoded by the sal cluster showed unusual kinetic properties. Enzymes were adapted for turnover of 4-chlorocatechol and 3-chloromuconate; however, 4-methylcatechol and 3-methylmuconate were identified as the preferred substrates. Investigation of the substrate spectrum identified 4- and 5-methylsalicylate as growth substrates, which were effectively converted by enzymes of the sal cluster into 4-methylmuconolactone, followed by isomerization to 3-methylmuconolactone. The function of the sal gene cluster is therefore to channel both chlorosubstituted and methylsubstituted salicylates into a catechol ortho cleavage pathway, followed by dismantling of the formed substituted muconolactones through specific pathways.

SUBMITTER: Camara B 

PROVIDER: S-EPMC1855727 | biostudies-literature | 2007 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.

Cámara Beatriz B   Bielecki Piotr P   Kaminski Filip F   dos Santos Vitor Martins VM   Plumeier Iris I   Nikodem Patricia P   Pieper Dietmar H DH  

Journal of bacteriology 20061215 5


Pseudomonas sp. strain MT1 has recently been reported to degrade 4- and 5-chlorosalicylate by a pathway assumed to consist of a patchwork of reactions comprising enzymes of the 3-oxoadipate pathway. Genes encoding the initial steps in the degradation of salicylate and substituted derivatives were now localized and sequenced. One of the gene clusters characterized (sal) showed a novel gene arrangement, with salA, encoding a salicylate 1-hydroxylase, being clustered with salCD genes, encoding muco  ...[more]

Similar Datasets

| S-EPMC4321380 | biostudies-literature
| S-EPMC10303062 | biostudies-literature
| S-EPMC4979912 | biostudies-literature
| S-EPMC3997995 | biostudies-literature
| S-EPMC1500982 | biostudies-literature
| S-EPMC8588411 | biostudies-literature
2006-06-21 | GSE5095 | GEO
| S-EPMC7155071 | biostudies-literature
| S-EPMC5730258 | biostudies-other
| S-EPMC7405988 | biostudies-literature