Microarray and real-time PCR analysis of adrenal gland gene expression in the 7-day-old rat: effects of hypoxia from birth.
Ontology highlight
ABSTRACT: We hypothesize that changes in adrenal gene expression mediate the increased plasma corticosterone and steroidogenesis in rat pups exposed to hypoxia from birth. In the current study, rat pups (with their dams) were exposed to hypoxia from birth and compared with pups from normoxic dams fed ad libitum or pair fed to match the decreased maternal food intake that occurs during hypoxia. Microarray analysis was performed, followed by verification with real-time PCR. Furthermore, the expression of selected genes involved in adrenal function was analyzed by real-time PCR, regardless of microarray results. Hypoxia increased plasma ACTH and corticosterone, while food restriction had no effect. Microarray revealed that many of the genes affected by hypoxia encode proteins that require molecular oxygen (monooxygenases, oxidoreductases, and electron transport), whereas only a few genes known to be involved in adrenal steroidogenesis were affected. Interestingly, the expression of genes involved in mitochondrial function and intermediary metabolism was increased by hypoxia. Real-time PCR detected a small but significant increase in the expression of Cyp21a1 mRNA in the hypoxic adrenal. When decreased maternal food intake was controlled for, the effects of hypoxia were more pronounced, in that real-time PCR detected significant increases in the expression of Star (244%), Cyp21a1 (208%), and Ldlr (233%). The present study revealed that increased plasma corticosterone in rat pups was due to hypoxia per se, and not as a result of decreased food intake by the hypoxic dam. Furthermore, hypoxia induced changes in gene expression that account for more productive and efficient steroidogenesis.
SUBMITTER: Bruder ED
PROVIDER: S-EPMC1857286 | biostudies-literature | 2007 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA