Unknown

Dataset Information

0

A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2'-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes.


ABSTRACT: Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3'-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2'-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2'-O-methyl RNA and LNA-2'-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2'-O-methyladenosine with 2'-O-methyl-2,6-diaminopurine riboside (D(M)) or LNA-2,6-diaminopurine riboside (D(L)) increases the thermodynamic stability (DeltaDeltaG degrees 37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37 degrees C. D-A and D-G but not D-C mismatches formed by D(M) or D(L) generally destabilize 2'-O-methyl RNA/RNA and LNA-2'-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2'-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.

SUBMITTER: Pasternak A 

PROVIDER: S-EPMC1919511 | biostudies-literature | 2007

REPOSITORIES: biostudies-literature

altmetric image

Publications

A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2'-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes.

Pasternak Anna A   Kierzek Elzbieta E   Pasternak Karol K   Turner Douglas H DH   Kierzek Ryszard R  

Nucleic acids research 20070612 12


Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3'-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The  ...[more]

Similar Datasets

| S-EPMC1201327 | biostudies-literature
| S-EPMC9354233 | biostudies-literature
| S-EPMC9425559 | biostudies-literature
| S-EPMC8139960 | biostudies-literature
| S-EPMC7083880 | biostudies-literature
| S-EPMC9669196 | biostudies-literature
| S-EPMC3448858 | biostudies-literature
| S-EPMC2980188 | biostudies-literature
| S-EPMC9462035 | biostudies-literature
| S-EPMC2961242 | biostudies-literature