Comparison of K+-channel genes within the genomes of Anopheles gambiae and Drosophila melanogaster.
Ontology highlight
ABSTRACT: BACKGROUND: Potassium channels are the largest and most diverse type of ion channel found in nature. The completion of the sequencing of the genomes of Drosophila melanogaster and Anopheles gambiae, which belong to the same order, the Diptera, allows us to compare and contrast K+-channel genes and gene families present within the genomes of two dipterans. RESULTS: This study identifies at least eight voltage-gated K+-channel genes in Anopheles, as well as three Slo-family, three Eag-family and six inward rectifier K+-channel genes. The genomic organization of K+-channel genes from Drosophila and Anopheles is well conserved. The sequence identity of the most similar K+-channel gene products between these two species ranges from 42% to 98%, with a mean value of 85%. Although most K+-channel genes in Drosophila and Anopheles are present in a 1:1 ratio, Anopheles has more genes in three K+-channel types, namely KQT, Kv3, and inward rectifier channels. Microsynteny between the genes flanking K+-channel genes in Drosophila and Anopheles was seldom observed; however, most of the K+-channel genes are indeed located at positions which a previous genome-wide comparison has designated as homologous chromosomal regions. CONCLUSIONS: The Anopheles genome encodes more voltage-gated and inward rectifier K+-channel genes than that of Drosophila. Despite the conservation of intron-exon boundaries, orthologs of genes flanking K+-channel genes in Drosophila are generally not found adjacent to the Anopheles K+-channel orthologs, suggesting that extensive translocation of genes has occurred since the divergence of these two organisms.
SUBMITTER: McCormack TJ
PROVIDER: S-EPMC193658 | biostudies-literature | 2003
REPOSITORIES: biostudies-literature
ACCESS DATA