Chemotaxis of sperm cells.
Ontology highlight
ABSTRACT: We develop a theoretical description of sperm chemotaxis. Sperm cells of many species are guided to the egg by chemoattractants, a process called chemotaxis. Motor proteins in the flagellum of the sperm generate a regular beat of the flagellum, which propels the sperm in a fluid. In the absence of a chemoattractant, sperm swim in circles in two dimensions and along helical paths in three dimensions. Chemoattractants stimulate a signaling system in the flagellum, which regulates the motors to control sperm swimming. Our theoretical description of sperm chemotaxis in two and three dimensions is based on a generic signaling module that regulates the curvature and torsion of the swimming path. In the presence of a chemoattractant, swimming paths are drifting circles in two dimensions and deformed helices in three dimensions. The swimming paths can be described by a dynamical system that exhibits different dynamic regimes, which correspond to different chemotactic behaviours. We conclude that sampling a concentration field of chemoattractant along circular and helical swimming paths is a robust strategy for chemotaxis that works reliably for a vast range of parameters.
SUBMITTER: Friedrich BM
PROVIDER: S-EPMC1948934 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA