Unknown

Dataset Information

0

Phenotypic and transcriptomic changes associated with potato autopolyploidization.


ABSTRACT: Polyploidy is remarkably common in the plant kingdom and polyploidization is a major driving force for plant genome evolution. Polyploids may contain genomes from different parental species (allopolyploidy) or include multiple sets of the same genome (autopolyploidy). Genetic and epigenetic changes associated with allopolyploidization have been a major research subject in recent years. However, we know little about the genetic impact imposed by autopolyploidization. We developed a synthetic autopolyploid series in potato (Solanum phureja) that includes one monoploid (1x) clone, two diploid (2x) clones, and one tetraploid (4x) clone. Cell size and organ thickness were positively correlated with the ploidy level. However, the 2x plants were generally the most vigorous and the 1x plants exhibited less vigor compared to the 2x and 4x individuals. We analyzed the transcriptomic variation associated with this autopolyploid series using a potato cDNA microarray containing approximately 9000 genes. Statistically significant expression changes were observed among the ploidies for approximately 10% of the genes in both leaflet and root tip tissues. However, most changes were associated with the monoploid and were within the twofold level. Thus, alteration of ploidy caused subtle expression changes of a substantial percentage of genes in the potato genome. We demonstrated that there are few genes, if any, whose expression is linearly correlated with the ploidy and can be dramatically changed because of ploidy alteration.

SUBMITTER: Stupar RM 

PROVIDER: S-EPMC1950613 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


Polyploidy is remarkably common in the plant kingdom and polyploidization is a major driving force for plant genome evolution. Polyploids may contain genomes from different parental species (allopolyploidy) or include multiple sets of the same genome (autopolyploidy). Genetic and epigenetic changes associated with allopolyploidization have been a major research subject in recent years. However, we know little about the genetic impact imposed by autopolyploidization. We developed a synthetic auto  ...[more]

Similar Datasets

| S-EPMC3542052 | biostudies-literature
2015-02-01 | GSE61103 | GEO
2015-02-01 | E-GEOD-61103 | biostudies-arrayexpress
| 2390908 | ecrin-mdr-crc
| S-EPMC8093014 | biostudies-literature
| S-EPMC6993066 | biostudies-literature
| S-EPMC8087710 | biostudies-literature
| S-EPMC7853039 | biostudies-literature
| S-EPMC4105467 | biostudies-literature
| S-EPMC3998024 | biostudies-literature